Skip to main content

Quantum Calabi-Yau and Classical Crystals

  • Chapter
The Unity of Mathematics

Part of the book series: Progress in Mathematics ((PM,volume 244))

Summary

We propose a new duality involving topological strings in the limit of the large string coupling constant. The dual is described in terms of a classical statistical mechanical model of crystal melting, where the temperature is the inverse of the string coupling constant. The crystal is a discretization of the toric base of the Calabi-Yau with lattice length g s. As a strong piece of evidence for this duality we recover the topological vertex in terms of the statistical mechanical probability distribution for crystal melting. We also propose a more general duality involving the dimer problem on periodic lattices and topological A-model string on arbitrary local toric threefolds. The (p, q) 5-brane web, dual to Calabi-Yau, gets identified with the transition regions of rigid dimer configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Aganagic, A. Klemm, M. Mariño, and C. Vafa, The topological vertex, Comm. Math. Phys., 254 (2005), 425–478. M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariño, and C. Vafa, Topological strings and integrable hierarchies, hep-th/0312085, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Iqbal, All genus topological string amplitudes and 5-brane webs as Feynman diagrams, hep-th/0207114, 2002.

    Google Scholar 

  3. D. E. Diaconescu and B. Florea, Localization and gluing of topological amplitudes, hepth/0309143, 2003.

    Google Scholar 

  4. S. Katz, A. Klemm, and C. Vafa, Geometric engineering of quantum field theories, Nuclear Phys. B, 497 (1997), 173–195. S. Katz, P. Mayr, and C. Vafa, Mirror symmetry and exact solution of 4D N = 2 gauge theories I, Adv. Theor. Math. Phys., 1 (1998), 53–114.

    Article  MATH  MathSciNet  Google Scholar 

  5. N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, in P. Etinghof, V. Retakh, and I. Singer, eds., The Unity of Mathematics, Birkhäuser Boston, Cambridge, MA, 2005 (this volume), 525–596.

    Google Scholar 

  6. A. Iqbal and A. K. Kashani-Poor, SU(N) geometries and topological string amplitudes, hep-th/0306032, 2003.

    Google Scholar 

  7. A. Okounkov and R. Pandharipande, Gromov-Witten theory, Hurwitz theory, and completed cycles, math.AG/0204305, 2002. A. Okounkov and R. Pandharipande, The equivariant Gromov-Witten theory of P 1, math.AG/0207233, 2002. A. Okounkov and R. Pandharipande, Virasoro constraints for target curves, math.AG/0308097, 2003.

    Google Scholar 

  8. C.-C. M. Liu, K. Liu, and J. Zhou, On a proof of a conjecture of Marino-Vafa on Hodge integrals, Math. Res. Lett., 11-2 (2004), 259–272. C.-C. M. Liu, K. Liu, and J. Zhou, A proof of a conjecture of Marino-Vafa on Hodge integrals, J. Differential Geom., 65 (2004), 289–340. C.-C. M. Liu, K. Liu, and J. Zhou, Mariño-Vafa formula and Hodge integral identities, math.AG/0308015, 2003.

    MATH  MathSciNet  Google Scholar 

  9. A. Okounkov and R. Pandharipande, Hodge integrals and invariants of the unknot, Geom. Topol., 8 (2004), 675–699.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Comm. Math. Phys., 165 (1994), 311–428.

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Gopakumar and C. Vafa, M-theory and topological strings I, hep-th/9809187, 1998.

    Google Scholar 

  12. C. Faber and R. Pandharipande, Logarithmic series and Hodge integrals in the tautological ring (with an appendix by D. Zagier), math.AG/0002112, 2000.

    Google Scholar 

  13. K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222, 2000.

    Google Scholar 

  14. K. Hori, A. Iqbal, and C. Vafa, D-branes and mirror symmetry, hep-th/0005247, 2000.

    Google Scholar 

  15. R. Cerf and R. Kenyon, The low-temperature expansion of the Wulff crystal in the 3D Ising model, Comm. Math. Phys., 222-1 (2001), 147–179.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Okounkov and N. Reshetikhin, Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram, J. Amer. Math. Soc., 16-3 (2003), 581–603. A. Okounkov and N. Reshetikhin, Random skew plane partitions and the Pearcey process, math.CO/0503508, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  17. I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, UK, 1995.

    MATH  Google Scholar 

  18. V. Kac, Infinite-Dimensional Lie Algebras, Cambridge University Press, Cambridge, UK, 1990.

    MATH  Google Scholar 

  19. R. Kenyon, An introduction to the dimer model, math.CO/0310326, 2003; also available online from http://topo.math.u-psud.fr/~kenyon/papers/papers.html.

    Google Scholar 

  20. P.W. Kasteleyn, The statistics of dimers on a lattice, Physica, 27 (1961), 1209–1225.

    Article  Google Scholar 

  21. M. Fisher and H. Temperley, Dimer problem in statistical mechanics: An exact result, Philos. Mag., 6 (1961), 1061–1063.

    MATH  MathSciNet  Google Scholar 

  22. O. Aharony, A. Hanany, and B. Kol, Webs of (p, q) 5-branes, five dimensional field theories and grid diagrams, J. High Energy Phys., 9801 (1998), 002.

    Article  Google Scholar 

  23. N. C. Leung and C. Vafa, Branes and toric geometry, Adv. Theoret. Math. Phys., 2 (1998), 91–118.

    MATH  MathSciNet  Google Scholar 

  24. R. Kenyon, A. Okounkov, and S. Sheffield, Dimers and amoebae, to appear; mathph/0311005, 2003.

    Google Scholar 

  25. R. Kenyon and A. Okounkov, Planar dimers and Harnack curves, math.AG/0311062, 2003; Limit shapes and the complex Burgers equation, math-ph/0507007, 2005.

    Google Scholar 

  26. A. Iqbal, N. Nekrasov, A. Okounkov, and C. Vafa, Quantum foam and topological strings, hep-th/0312022, 2003.

    Google Scholar 

  27. H. Ooguri, A. Strominger, and C. Vafa, Black hole attractors and the topological string, Phys. Rev. D, 70 (2004), 106007.

    Article  MathSciNet  Google Scholar 

  28. R. Kenyon, A. Okounkov, and C. Vafa, work in progress.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Okounkov, A., Reshetikhin, N., Vafa, C. (2006). Quantum Calabi-Yau and Classical Crystals. In: Etingof, P., Retakh, V., Singer, I.M. (eds) The Unity of Mathematics. Progress in Mathematics, vol 244. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4467-9_16

Download citation

Publish with us

Policies and ethics