Skip to main content

Algebraic Structure of Yang-Mills Theory

  • Chapter
The Unity of Mathematics

Part of the book series: Progress in Mathematics ((PM,volume 244))

Abstract

In the present paper we analyze algebraic structures arising in Yang-Mills theory. The paper should be considered as a part of a project started with [15] and devoted to maximally supersymmetric Yang-Mills theories. In this paper we collect those of our results which hold without the assumption of supersymmetry and use them to give rigorous proofs of some results of [15]. We consider two different algebraic interpretations of Yang-Mills theory—in terms of A -algebras and in terms of representations of Lie algebras (or associative algebras). We analyze the relations between these two approaches and calculate some Hochschild (co)homology of the algebras in question.

To I. M. Gelfand with admiration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Alexandrov, A. Schwarz, O. Zaboronsky, and M. Kontsevich, The geometry of the master equation and topological quantum field theory, Internat. J. Modern Phys. A, 12-7 (1997), 1405–1429.

    Article  MATH  MathSciNet  Google Scholar 

  2. G. Barnich, F. Brandt, and M. Henneaux, Local BRST cohomology in gauge theories, Phys. Rep., 338 (2000), 439–569.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Bezrukavnikov, Koszul property and Frobenius splitting of Schubert varieties, alggeom/9502021, 1995.

    Google Scholar 

  4. R. Bott, Homogeneous vector bundles, Ann. Math. (2), 66 (1957), 203–248.

    Article  MathSciNet  Google Scholar 

  5. É. Cartan, The Theory of Spinors, foreword by R. Streater, reprint of the 1966 English translation, Dover Books on Advanced Mathematics, Dover, New York, 1981.

    Google Scholar 

  6. M. Cederwall, B. Nilsson, and D. Tsimpis, Spinorial cohomology and maximally supersymmetric theories, J. High Energy Phys., 2-9 (2002), 009.

    Article  MathSciNet  Google Scholar 

  7. A. Corti and M. Reid, Weighted Grassmannians, in M. C. Beltrametti, ed., Algebraic Geometry: A Volume in Memory of Paolo Francia, Walter de Gruyter, Berlin, New York, 2002, 141–164.

    Google Scholar 

  8. W. Dicks, A survey of recent work on the cohomology of one-relator associative algebras, in J. L. Bueso, P. Jara, and B. Torrecillas, eds., Ring Theory, Lecture Notes in Mathematics 1328, Springer-Verlag, Berlin, 1988, 75–81.

    Chapter  Google Scholar 

  9. Ph. Griffiths and J. Harris, Principles of Algebraic Geometry, Pure and Applied Mathematics, Wiley-Interscience, New York, 1978.

    MATH  Google Scholar 

  10. M. Kontsevich and Y. Soibelman, Homological mirror symmetry and torus fibrations, in Symplectic Geometry and Mirror Symmetry (Seoul, 2000), World Scientific, River Edge, NJ, 2001, 203–263.

    Google Scholar 

  11. C. Löfwall, On the subalgebra generated by the one-dimensional elements in the Yoneda extalgebra, in L. L. Avramov and K. B. Tchakerian, Algebra: Some Current Trends, Lecture Notes in Mathematics 1352, Springer-Verlag, Berlin, 1988, 291–338.

    Google Scholar 

  12. S. MacLane, Homology, Die Grundlehren der mathematischen Wissenschaften 114, Academic Press, New York, Springer-Verlag, Berlin, Göttingen, Heidelberg, 1963.

    MATH  Google Scholar 

  13. S. Merkulov, Strong homotopy algebras of a Kähler manifold, Internat. Math. Res. Notices, 1999-3 (1999), 153–164.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Movshev, Bar duality, in preparation.

    Google Scholar 

  15. M. Movshev and A. Schwarz, On maximally supersymmetric Yang-Mills theories, Nuclear Phys. B, 681-3 (2004), 324–350.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Movshev, M., Schwarz, A. (2006). Algebraic Structure of Yang-Mills Theory. In: Etingof, P., Retakh, V., Singer, I.M. (eds) The Unity of Mathematics. Progress in Mathematics, vol 244. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4467-9_14

Download citation

Publish with us

Policies and ethics