Skip to main content

Some General Methods for Making Inferences about Variance Components

  • Chapter
Analysis of Variance for Random Models
  • 1722 Accesses

Abstract

In the study of random and mixed effects models, our interest lies primarily in making inferences about the specific variance components. In this chapter, we consider some general methods for point estimation, confidence intervals, and hypothesis testing for linear models involving random effects. Most of the chapter is devoted to the study of various methods of point estimation of variance components. However, in the last two sections, we briefly address the problem of hypothesis testing and confidence intervals. There are now several methods available for estimation of variance components from unbalanced data. Henderson’s (1953) paper can probably be characterized as the first attempt to systematically describe different adaptations of the ANOVA methodology for estimating variance components from unbalanced data. Henderson outlined three methods for obtaining estimators of variance components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • R. D. Anderson (1979), Estimating variance components from balanced data: Optimum properties of REML solutions and MIVQUE estimation, in L. D. Van Vleck and S. R. Searle, eds., Variance Components and Animal Breeding: Proceedings of a Conference in Honor of C. R. Henderson, Animal Science Department, Cornell University, Ithaca, NY, 205–206.

    Google Scholar 

  • I. Ashida and H. Iwaisaki (1995), Estimation of sampling co(variance) of the REML estimators for variance components in a mixed linear model, Japan J. Biometrics, 16, 9–17.

    Google Scholar 

  • J. K. Baksalary and A. Molinska (1984), Nonnegative unbiased estimability of linear combinations of two variance components, J. Statist. Plann. Inference, 10, 1–8.

    Article  MATH  MathSciNet  Google Scholar 

  • R. M. Baskin (1993), Estimation of variance components for the U. S. Consumer Price Index via Gibbs sampling, in ASA Proceedings of Survey Research Section, American Statistical Association, Alexandria, VA, 803–813.

    Google Scholar 

  • K. Berk (1987), Computing for incomplete repeated measures, Biometrics, 43, 385–398.

    Article  Google Scholar 

  • G. E. P. Box and G. C. Tiao (1973), Bayesian Inference in Statistical Analysis, Addison-Wesley, Reading, MA.

    MATH  Google Scholar 

  • N. E. Breslow and D. G. Clayton (1993), Approximate inference in generalized linear mixed models, J. Amer. Statist. Assoc., 88, 9–25.

    Article  MATH  Google Scholar 

  • J. C. Brockleban and F. G. Giesbrech (1984), Estimating variance components using alternative MINQUEs in selected unbalanced design, in K. Hinkelman, ed., Experimental Design, Statistical Methods and Genetic Statistics, Marcel Dekker, New York, 172–211.

    Google Scholar 

  • L. D. Broemeling (1985), Bayesian Analysis of Linear Models, Marcel Dekker, New York.

    MATH  Google Scholar 

  • H. Brown and R. Prescott (1999), Applied Mixed Models in Medicine, Wiley, New York.

    MATH  Google Scholar 

  • H. K. Brown and R. A. Kempton (1994), The application of REML in clinical trials, Statist. Med., 13, 1601–1617.

    Article  Google Scholar 

  • K. G. Brown (1976), Asymptotic behavior of MINQUE-type estimators of variance components, Ann. Statist., 4, 746–754.

    MATH  MathSciNet  Google Scholar 

  • K. G. Brown (1977), On estimation of diagonal covariance matrices by MINQUE, Comm. Statist. A Theory Methods, 6, 471–484.

    Google Scholar 

  • K. G. Brown (1978), Estimation of variance components using residuals, J. Amer. Statist. Assoc., 73, 141–146.

    Article  MATH  MathSciNet  Google Scholar 

  • B. D. Burch and H. K. Iyer (1997), Exact confidence intervals for a variance ratio (or heritability) in a mixed linear model, Biometrics, 53, 1318–1333.

    Article  MATH  MathSciNet  Google Scholar 

  • R. K. Burdick, H. J. Birch, and F. A. Graybill (1986), Confidence intervals on measures of variability in an unbalanced two-fold nested design with equal subsampling, J. Statist. Comput. Simul., 25, 259–272.

    MATH  Google Scholar 

  • R. K. Burdick and F. A. Graybill (1984), Confidence intervals on linear combinations of variance components in the unbalanced one-way classification, Technometrics, 26, 131–136.

    Article  Google Scholar 

  • P. R. Burton, K. J. Tiller, L. C. Gurrin, W. A. C. M. Cookson, A. W. Musk, and L. J. Palmer (1999), Genetic variance components analysis for binary phenotypes using generalized linear mixed models (GLMMs) and Gibbs sampling, Genetic Epidemiology, 17, 118–140.

    Article  Google Scholar 

  • T. P. Callanan (1985), Restricted Maximum Likelihood Estimation of Variance Components: Computational Aspects, Ph.D.. dissertation, Iowa State University, Ames, IA.

    Google Scholar 

  • T. P. Callanan and D. A. Harville (1989), Some new algorithms for computing maximum likelihood estimates of variance components, in K. Berk and L. Malone, eds., Computer Science and Statistics: Proceedings of the 21st Annual Symposium on the Interface, American Statistical Association, Alexandria, VA, 435–444.

    Google Scholar 

  • T. P. Callanan and D. A. Harville (1991), Some new algorithms for computing restricted maximum likelihood estimates of variance components, J. Statist. Comput. Simul., 38, 239–259.

    MATH  MathSciNet  Google Scholar 

  • J. S. K. Chan and A. Y. C. Kuk (1997), Maximum likelihood estimation for probit-linear mixed models with correlated random effects, Biometrics, 53, 86–97.

    Article  MATH  MathSciNet  Google Scholar 

  • Y. B. Chaubey (1977), The Principle of MINQUE in Linear Models: Modifications, Extensions and Applications, Ph.D. dissertation, University of Rochester, Rochester, NY.

    Google Scholar 

  • Y. B. Chaubey (1980a), Application of the method of MINQUE for estimation in regression with intraclass covariance matrix, Sankhyā, 42, 28–32.

    MATH  MathSciNet  Google Scholar 

  • Y. B. Chaubey (1980b), Minimum norm quadratic estimators of variance components, Metrika, 27, 225–262.

    Article  MathSciNet  Google Scholar 

  • Y. B. Chaubey (1982), Minimum norm invariant quadratic estimation of a covariance matrix in linear model, Biometrical J., 24, 457–461.

    Article  MathSciNet  Google Scholar 

  • Y. B. Chaubey (1983), A non-negative estimator of variance component closest to MINQUE, Sankhyā, 45, 201–211.

    MATH  MathSciNet  Google Scholar 

  • Y. B. Chaubey (1985), Estimators of covariances in time series model, Statist. Probab. Lett., 3, 51–53.

    Article  MATH  MathSciNet  Google Scholar 

  • Y. B. Chaubey (1991), A note on nonnegative minimum bias MINQE in variance components model, Statist. Probab. Lett., 11, 395–397.

    Article  MATH  MathSciNet  Google Scholar 

  • Y. B. Chaubey and P. S. R. S. Rao (1976), Efficiencies of five estimators for the parameters of two linear models with unequal variances, Sankhyā Ser. B, 38, 364–370.

    Google Scholar 

  • R. Christiansen (1996), Exact tests for variance components, Biometrics, 52, 309–314.

    Article  MathSciNet  Google Scholar 

  • C. C. Cockerham and B. S. Weir (1977), Quadratic analysis of reciprocal crosses, Biometrics, 33, 187–203.

    Article  MATH  Google Scholar 

  • M. R. Conaway (1989), Analysis of repeated categorical measurements with conditional likelihood methods, J. Amer. Statist. Assoc., 84, 53–62.

    Article  MathSciNet  Google Scholar 

  • M. D. Conerly and J. T. Webster (1987), MINQE for the one-way classification, Technometrics, 29, 229–236.

    Article  MathSciNet  Google Scholar 

  • R. R. Corbeil and S. R. Searle (1976a), A comparison of variance component estimators, Biometrics, 32, 779–791.

    Article  MATH  MathSciNet  Google Scholar 

  • R. R. Corbeil and S. R. Searle (1976b), Restricted maximum likelihood (REML) estimation of variance components in the mixed model, Technometrics, 18, 31–38.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Cook, L. D. Broemeling, and M. K. Gharaff (1990), A Bayesian analysis of mixed linear model, Comm. Statist. A Theory Methods, 19, 987–1002.

    MATH  MathSciNet  Google Scholar 

  • D. R. Cox (1955), Some statistical methods connected with series of events (with discussion), J. Roy. Statist. Soc. Ser. B, 17, 129–164.

    MATH  MathSciNet  Google Scholar 

  • N. Cressie and S. N. Lahiri (1993), The asymptotic distribution of REML estimators, J. Multivariate Anal., 45, 217–233.

    Article  MATH  MathSciNet  Google Scholar 

  • K. Das (1979), Asymptotic optimality of restricted maximum likelihood estimates for the mixed model, Calcutta Statist. Assoc. Bull., 23, 125–142.

    Google Scholar 

  • O. L. Davies and P. L. Goldsmith, eds. (1972), Statistical Methods in Research and Production, 4th ed., Oliver and Boyd, Edinburgh.

    Google Scholar 

  • E. Demidenko and H. Massam (1999), On the existence of the maximum likelihood estimates in variance components models, Sankhyā Ser. A, 61, 431–443.

    MATH  MathSciNet  Google Scholar 

  • A. P. Dempster, D. B. Rubin, and R. K. Tsutakawa (1981), Estimation in covariance components models, J. Amer. Statist. Assoc., 76, 341–353.

    Article  MATH  MathSciNet  Google Scholar 

  • A. P. Dempster, M. R. Selwyn, C. M. Patel, and A. J. Roth (1984), Statistical and computational aspects of mixed model analysis, Appl. Statist., 33, 203–214.

    Article  MATH  Google Scholar 

  • A. J. Dobson (2002), An Introduction to Generalized Linear Models, 2nd ed., Chapman and Hall-CRC Press, Boca Raton, FL.

    MATH  Google Scholar 

  • M.Y. El-Bassiouni (1994), Short confidence intervals for variance components, Comm. Statist. A Theory Methods, 23, 1915–1933.

    MATH  MathSciNet  Google Scholar 

  • S. D. Elliott (1989), The method of unweighted means in univariate and multivariate analysis of variance, Educ. Psychology Meas., 49, 399–405.

    Article  Google Scholar 

  • D. A. Elston (1998), Estimation of denominator degrees of freedom of F-distributions for assessing Wald statistics for fixed-effect factors in unbalanced mixed models, Biometrics, 54, 1085–1096.

    Article  MATH  Google Scholar 

  • B. Engel (1990), The analysis of unbalanced linear models with variance components, Statist. Neerland., 44, 195–219.

    MathSciNet  Google Scholar 

  • R. Fayyad, F. A. Graybill, and R. Burdick (1996), A note on exact tests for variance components in unbalanced random and mixed linear models, Biometrics, 52, 306–308.

    Article  MATH  Google Scholar 

  • W. H. Fellner (1986), Robust estimation of variance components, Technometrics, 28, 51–60.

    Article  MATH  MathSciNet  Google Scholar 

  • A. R. Fennech and D. A. Harville (1991), Exact confidence sets for variance components in unbalanced mixed linear models, Ann. Statist., 4, 1771–1785.

    Google Scholar 

  • J. Focke and G. Dewess (1972), Uber die achätz methode Minque von C. R. Rao and ihre verallgemeinerung, Math. Oper. Statist. Ser. Statist., 3, 129–143.

    MathSciNet  Google Scholar 

  • R. N. Forthofer and G. G. Koch (1974), An extension of the symmetric sum approach to estimation of variance components, Biomet. Z., 16, 3–14.

    MathSciNet  MATH  Google Scholar 

  • S. Gao and T. M. F. Smith (1995), On the non-existence of a global nonnegative minimum bias invariant quadratic estimator of variance components, Statist. Probab. Lett., 25, 117–120.

    Article  MATH  MathSciNet  Google Scholar 

  • D. W. Gaylor, H. L. Lucas, and R. L. Anderson (1970), Calculation of expected mean squares by the abbreviated Doolittle and square root methods, Biometrics, 20, 641–656.

    Article  MathSciNet  Google Scholar 

  • A. E. Gelfand and A. F. M. Smith (1991), Gibbs sampling for marginal posterior expectations, Comm. Statist. A Theory Methods, 20, 1747–1766.

    MathSciNet  Google Scholar 

  • A. E. Gelfand, S. E. Hills, S. Racine-Poon, and A. F. M. Smith (1990), Illustration of Bayesian inference in normal data models using Gibbs sampling, J. Amer. Statist. Assoc., 85, 972–985.

    Article  Google Scholar 

  • C. F. Gerald (1977), Applied Numerical Analysis, Addison-Wesley, Reading, MA.

    Google Scholar 

  • M. K. Gharaff (1979), A General Solution to Making Inferences about the Parameters of Mixed Linear Models, Ph.D. dissertation, Oklahoma State University, Stillwater, OK.

    Google Scholar 

  • M. Ghosh (1996), On the nonexistence of nonnegative unbiased estmators of variance components, Sankhyā Ser. B, 58, 360–362.

    MATH  Google Scholar 

  • D. Gianola and R. L. Fernando (1986a), Random effects models for binary responses, Biometrics, 42, 217–218.

    Google Scholar 

  • D. Gianola and R. L. Fernando (1986b), Bayesian methods in animal breeding theory, J. Animal Sci., 63, 217–244.

    Google Scholar 

  • D. Gianola and J. L. Foulley (1990), Variance estimation from integrated likelihoods (VEIL), Genetic Selection Evolution, 22, 403–417.

    Google Scholar 

  • R. D. Gibbons and D. Hedeker (1997), Random effects probit and logic regression models for three-level data, Biometrics, 53, 1527–1537.

    Article  MATH  Google Scholar 

  • F. G. Giesbrecht (1983), An efficient procedure for computing MINQUE of variance components and generalized least squares estimates of fixed effects, Comm. Statist. A Theory Methods, 12, 2169–2177.

    MathSciNet  Google Scholar 

  • F. G. Giesbrecht and J. C. Burns (1985), Two-stage analysis based on a mixed model: Large sample asymptotic theory and small-sample simulation results, Biometrics, 41, 477–486.

    Article  MATH  Google Scholar 

  • F. G. Giesbrecht and P. M. Burrows (1978), Estimating variance components in hierarchical structures using MINQUE and restricted maximum likelihood, Comm. Statist. A Theory Methods, 7, 891–904.

    Google Scholar 

  • W. R. Gilks, D. G. Clayton, D. J. Spiegelhalter, N. G. Best, A. J. McNiel, L. D. Sharples, and A. J. Kirby (1993), Modeling complexity: Applications of Gibbs sampling in medicine (with discussion), J. Roy. Statist. Soc. Ser. B, 55, 39–102.

    MATH  Google Scholar 

  • A. R. Gilmour, R. D. Anderson, and A. L. Rae (1985), The analysis of binomial data by a generalized linear mixed model, Biometrika, 72, 593–599.

    Article  MathSciNet  Google Scholar 

  • D. Giltinan and M. Davidian (1995), Nonlinear Models for Repeated Measurement Data, Chapman and Hall, London.

    Google Scholar 

  • S. Gnot, J. Kleffé, and R. Zmyslony (1985), Nonnegativity of admissible invariant quadratic estimates in mixed linear models with two variance components, J. Statist. Plann. Inference, 12, 249–258.

    Article  MATH  MathSciNet  Google Scholar 

  • A. S. Golberger (1962), Best linear unbiased prediction in the generalized linear regression model, J. Amer. Statist. Assoc., 57, 369–375.

    Article  MathSciNet  Google Scholar 

  • H. Goldstein (1995), Multilevel Statistical Models, 2nd ed., Arnold, London.

    Google Scholar 

  • M. Gönen (2000), A Bayesian analysis of the intraclass correlations in the mixed linear model, Comm. Statist. A Theory Methods, 29, 1451–1464.

    MATH  Google Scholar 

  • J. H. Goodnight and W. J. Hemmerle (1979), A simplified algorithm for the W-transformation in variance component estimation, Technometrics, 21, 265–268.

    Article  Google Scholar 

  • D. G. Gosslee and H. L. Lucas (1965), Analysis of variance of disproportionate data when interaction is present, Biometrics, 21, 115–133.

    Article  MathSciNet  Google Scholar 

  • H.-U. Graser, S. P. Smith, and B. Tier (1987), A derivative-free approach for estimating variance components in animal models by restricted maximum likelihood, J. Animal Sci., 64, 1362–1370.

    Google Scholar 

  • J. W. Green (1988), Diagnostic Methods for Repeated Measures Experiments with Missing Cell, Technical Report, Department of Mathematical Sciences, University of Delware, Newark, DE.

    Google Scholar 

  • B. Griffing (1956), Concept of general and specific combining ability in relation to diallel crossing system, Australian J. Biol. Sci., 9, 463–493.

    Google Scholar 

  • M. L. Gumpertz and S. G. Pantula (1992), Nonlinear regression with variance components, Amer. Statist. Assoc., 87, 201–209.

    Article  MATH  MathSciNet  Google Scholar 

  • M. L. Gumpertz and J. O. Rawlings (1992), Nonlinear regression with variance components: Modeling effects of ozone on crop yield, Crop Sci., 32, 219–224.

    Article  Google Scholar 

  • H. O. Hartley and J. N. K. Rao (1967), Maximum likelihood estimation for the mixed analysis of variance model, Biometrika, 54, 93–108.

    MATH  MathSciNet  Google Scholar 

  • H. O. Hartley and W. K. Vaughn (1972), A computer program for the mixed analysis of variance model based on maximum likelihood, in T. A. Bancroft, ed., Statistical Papers in Honor of George W. Snedecor, Iowa State University Press, Ames, IA, 129–144.

    Google Scholar 

  • H. O. Hartley, J. N. K. Rao, and G. Keifer (1969), Variance estimation with one unit per statum, J. Amer. Statist. Assoc., 64, 841–851.

    Article  MathSciNet  Google Scholar 

  • H. O. Hartley, J.N.K. Rao, and L. R. LaMotte (1978), A simple synthesis-based method of estimating variance components, Biometrics, 34, 233–243.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Hartung (1981), Non-negative minimum biased invariant estimation in variance components models, Ann. Statist., 9, 272–292.

    MathSciNet  Google Scholar 

  • T. D. Hartwell and D. W. Gaylor (1973), Estimating variance components for two-way disproportionate data with missing cells by the method of unweighted means, J. Amer. Statist. Assoc., 68, 379–383.

    Article  Google Scholar 

  • D. A. Harville (1969a), Variance Component Estimation for the Unbalanced One-Way Random Classification, Technical Report ARL-69-0180, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Dayton, OH.

    Google Scholar 

  • D. A. Harville (1969b), Variances of variance component estimators for the unbalanced two-way cross classification with application to balanced incomplete block designs, Ann. Math. Statist., 40, 408–416.

    MathSciNet  MATH  Google Scholar 

  • D. A. Harville (1969c), Quadratic unbiased estimation of variance components for the one-way classification, Biometrika, 56, 313–326.

    Article  MATH  Google Scholar 

  • D. A. Harville (1974), Bayesian inference for variance components using only error contrast, Biometrika, 61, 383–385.

    Article  MATH  MathSciNet  Google Scholar 

  • D. A. Harville (1977), Maximum-likelihood approaches to variance component estimation and to related problems, J. Amer. Statist. Assoc., 72, 320–340.

    Article  MATH  MathSciNet  Google Scholar 

  • D. A. Harville (1988), Invariant inference for variance components, in J. N. Srivastava, ed., Probability and Statistics: Essays in Honor of F. A. Graybill, North-Holland, Amsterdam, 117–133.

    Google Scholar 

  • D. A. Harville (1990), BLUP (best linear unbiased estimation) and beyond, in D. Gianola and K. Hammond, eds., Advances in Statistical Methods for Genetic Improvement of Livestock, Springer-Verlag, New York, 136–176.

    Google Scholar 

  • D. A. Harville and T. P. Callanan (1990), Computational aspects of likelihood-based inference for variance components, in D. Gianola and K. Hammond, eds., Advances in Statistical Methods for Genetic Improvement of Livestock, Springer-Verlag, New York, 136–176.

    Google Scholar 

  • D. A. Harville and A. L. Carriquiry (1992), Classical and Bayesian prediction as applied to an unbalanced mixed linear model, Biometrics, 48, 987–1003.

    Article  MATH  MathSciNet  Google Scholar 

  • D. A. Harville and R.W. Mee (1984), A mixed model procedure for analyzing ordered categorical data, Biometrics, 40, 393–408.

    Article  MATH  MathSciNet  Google Scholar 

  • D. A. Harville and A. G. Zimmerman (1996), The posterior-distribution of the fixed and random effects in a mixed effects linear model, J. Statist. Comput. Simul., 54, 211–219.

    MATH  Google Scholar 

  • B. I. Hayman (1954), The theory and analysis of diallel crosses, Genetics, 39, 789–809.

    Google Scholar 

  • B. I. Hayman (1960), Maximum likelihood estimation of genetic components of variation, Biometrics, 16, 369–381.

    Article  MATH  Google Scholar 

  • R. H. Heck and S. L. Thomas (1999), An Introduction to Multilevel Modeling Techniques, Lawrence Erlbaum, Mahwah, NJ.

    Google Scholar 

  • D. Hedecker and R. D. Gibbons (1994), A random effects ordinal regression model for multi-level analysis, Biometrics, 50, 933–944.

    Article  Google Scholar 

  • W. J. Hemmerle and H. O. Hartley (1973), Computing maximum likelihood for the mixed A.O.V. estimation using the W transformation, Technometrics, 15, 819–831.

    Article  MATH  MathSciNet  Google Scholar 

  • W. J. Hemmerle and J. A. Lorens (1976), Improved algorithm for the W-transformation in variance component estimation, Technometrics, 18, 207–211.

    Article  MATH  MathSciNet  Google Scholar 

  • C. R. Henderson (1953), Estimation of variance and covariance components, Biometrics, 9, 226–252.

    Article  MathSciNet  Google Scholar 

  • C. R. Henderson (1973), Sire evaluation and genetic trends, in Proceedings of the Animal Breeding and Genetics Symposium in Honor of Dr. Jay L. Lush, American Society of Animal Science and American Dairy Science Association, Champaign, IL, 10–41.

    Google Scholar 

  • C. R. Henderson (1975), Best linear unbiased estimation and prediction under a selection model, Biometrics, 31, 423–447.

    Article  MATH  Google Scholar 

  • C. R. Henderson (1984), Applications of Linear Models in Animal Breeding, University of Guelph, Guelph, ON, Canada.

    Google Scholar 

  • C. R. Henderson (1985), MIVQUE and REML estimation of additive and nonadditive genetic variances, J. Animal Sci., 61, 113–121.

    Google Scholar 

  • C. R. Henderson (1986), Recent developments in variance and covariance estimation, J. Animal Sci., 63, 208–216.

    Google Scholar 

  • C. R. Henderson, O. Kempthorne, S. R. Searle, and C. N. von Krosigk (1959), Estimation of environmental and genetic trends from records subject to culling, Biometrics, 15, 192–218.

    Article  MATH  Google Scholar 

  • C. R. Henderson, S. R. Searle, and L. R. Schaffer (1974), The invariance and calculation of method 2 for estimating variance components, Biometrics, 30, 583–588.

    Article  MATH  MathSciNet  Google Scholar 

  • R. P. Hernández, R. K. Burdick, and N. J. Birch (1992), Confidence intervals and tests of hypotheses on variance components in an unbalanced two-fold nested design, Biometrical J., 34, 387–402.

    Article  Google Scholar 

  • J. P. Hobert and G. Casella (1996), The effect of improper priors on Gibbs sampling in hierarchical linear mixed models, J. Amer. Statist. Assoc., 91, 1461–1473.

    Article  MATH  MathSciNet  Google Scholar 

  • R. R. Hocking (1985), The Analysis of Linear Models, Brooks-Cole, Monterey, CA.

    MATH  Google Scholar 

  • R. R. Hocking, J. W. Green, and R. H. Bremer (1989), Variance component estimation with model-based diagnostics, Technometrics, 31, 227–240.

    Article  Google Scholar 

  • R. R. Hocking and M. H. Kutner (1975), Some analytical and numerical comparisons of estimators for the mixed A. O. V. model, Biometrics, 31, 19–28.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Hoefer (1998), Variance component estimation in animal breeding: Areview, J. Animal Breeding Genetics, 115, 247–265.

    Google Scholar 

  • S. D. Horn and R. A. Horn (1975), Comparison of estimators of heteroscedastic variances in linear models, J. Amer. Statist. Assoc., 70, 872–879.

    Article  MATH  MathSciNet  Google Scholar 

  • D. A. Huber, T. L. White, and G. R. Hodge (1994), Variance component estimation techniques compared for two mating designs with forest genetic architecture through computer simulation, Theoret. Appl. Genetics, 88, 236–242.

    Article  Google Scholar 

  • H. M. Hudson (1983), Random effects in log-linear models, J. Statist. Comput. Simul., 17, 43–50.

    Google Scholar 

  • R. L. Jennrich and P. F. Sampson (1976), Newton-Raphson and related algorithms for maximum likelihood variance component estimation, Technometrics, 18, 11–17.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Jiang (1996), REML estimation: Asymptotic behavior and related topics, Ann. Statist., 24, 255–286.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Jiang (1997), Wald consistency and the method of sieves in REML estimation, Ann. Statist., 25, 1781–1803.

    Article  MATH  MathSciNet  Google Scholar 

  • A. C. Jones (1989), Likelihood based confidence intervals for variance components, in ASA Proceedings of Statistical Graphics Section, American Statistical Association, Alexandria, VA, 36–39.

    Google Scholar 

  • J. S. Kaplan (1983), A method for calculating MINQUE estimators of variance components, J. Amer. Statist. Assoc., 78, 476–477.

    Article  MATH  Google Scholar 

  • R. M. Kasim and S.W. Raudenbush (1998), Application of Gibbs sampling to nested variance components models with heterogeneous within-group variance, J. Educ. Behavioral Statist., 23, 93–116.

    Article  Google Scholar 

  • B.W. Kennedy (1991), C. R. Henderson: The unfinished legacy, J. Dairy Sci., 74, 4067–4081.

    Article  Google Scholar 

  • M. G. Kenward and J. H. Roger (1997), Small sample inference for fixed effects from restricted maximum likelihood, Biometrics, 53, 983–997.

    Article  MATH  Google Scholar 

  • R. Khattree (1998), Some practical estimation procedures for variance components, Comput. Statist. Data Anal., 28, 1–32.

    Article  MATH  Google Scholar 

  • R. Khattree (1999), Nonnegative estimation of variance components: A modification to Henderson’s ANOVA methodology, Sankhyā Ser. B, 61, 261–265.

    MATH  MathSciNet  Google Scholar 

  • A. I. Khuri (1981), Simultaneous confidence intervals for functions of variance components in random models, J. Amer. Statist. Assoc., 76, 878–885.

    Article  MathSciNet  Google Scholar 

  • A. I. Khuri (1987), An exact test for the nesting effect’s variance component in an unbalanced random two-fold nested model, Statist. Probab. Lett., 5, 305–311.

    Article  MATH  MathSciNet  Google Scholar 

  • A. I. Khuri (1990), Exact test for random models with unequal cell frequencies in the last stage, J. Statist. Plann. Inference, 24, 177–193.

    Article  MATH  MathSciNet  Google Scholar 

  • A. I. Khuri and R. C. Littell (1987), Exact tests for the main effects variance components in an unbalanced random two-way model, Biometrics, 43, 545–560.

    Article  MATH  MathSciNet  Google Scholar 

  • A. I. Khuri, T. Mathew, and B. K. Sinha (1998), Statistical Tests for Mixed Linear Models, Wiley, New York.

    MATH  Google Scholar 

  • J. Kleffé (1976), A note on MINQUE for normal models, Math. Oper. Statist. Ser. Statist., 7, 707–714.

    Google Scholar 

  • J. Kleffé (1977a), Invariant methods for estimating variance components in mixed linear models, Math. Oper. Statist. Ser. Statist., 8, 233–250.

    MATH  Google Scholar 

  • J. Kleffé (1977b), Optimal estimation of variance components: A survey, Sankhyā Ser. B, 39, 211–244.

    MATH  Google Scholar 

  • J. Kleffé (1980), On recent progress of MINQUE theory: Nonnegative estimation, consistency, asymptotic normality and explicit formulae, Math. Oper. Statist. Ser. Statist., 11, 563–588.

    MATH  Google Scholar 

  • J. Kleffé and J. N. K. Rao (1986), The existence of asymptotically unbiased nonnegative quadratic estimates of variance components in ANOVA models, J. Amer. Statist. Assoc., 81, 692–698.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Kleffé and B. Seifert (1980), Matrix free computation of C. R. Rao’s MINQUE for unbalanced nested classification models, Comput. Statist. Data Anal., 2, 215–228.

    Article  Google Scholar 

  • J. Kleffé and B. Seifert (1986), Computation of variance components by the MINQUE method, J. Multivariate Anal., 18, 107–116.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Klotz and J. Putter (1970), Remarks on Variance Components: Likelihood Summits and Flats, Technichal Report 247, Department of Statistics, University of Wisconsin, Madison, WI.

    Google Scholar 

  • J. D. Knoke (1985), The method of unweighted means in unbalanced analysis of variance, Biometrical J., 29, 383–396

    Google Scholar 

  • G. G. Koch (1967a), A general approach to the estimation of variance components, Techometrics, 9, 93–118.

    Article  MATH  Google Scholar 

  • G. G. Koch (1967b), A procedure to estimate the population mean in random effects models, Technometrics, 9, 577–586.

    Article  MathSciNet  Google Scholar 

  • G. G. Koch (1968), Some further remarks concerning “A general approach to estimation of variance components,” Technometrics, 10, 551–558.

    Article  Google Scholar 

  • I. Kreft and J. deLeeuw (1998), Introducing Multilevel Modeling, Sage, Thousand Oaks, CA.

    Google Scholar 

  • N. M. Laird (1982), Computation of variance components using the EM algorithm, J. Statist. Comput. Simul., 14, 295–303.

    MATH  MathSciNet  Google Scholar 

  • N. M. Laird, N. Lange, and D. Stram (1987), Maximum likelihood computation with repeated measures: Application of the EM algorithm, J. Amer. Statist. Assoc., 82, 97–105.

    Article  MATH  MathSciNet  Google Scholar 

  • N. M. Laird and J. H. Ware (1982), Random-effects models for longitudinal data, Biometrics, 38, 963–974.

    Article  MATH  Google Scholar 

  • L. R. LaMotte (1973a), Quadratic estimation of variance components, Biometrics, 29, 311–330.

    Article  MathSciNet  Google Scholar 

  • L. R. LaMotte (1973b), On non-negative quadratic unbiased estimation of variance components, J. Amer. Statist. Assoc., 68, 728–730.

    Article  MATH  MathSciNet  Google Scholar 

  • J. R. Landis and G. G. Koch (1977), A one-way component of variance model for categorical data, Biometrics, 33, 671–679.

    Article  MathSciNet  Google Scholar 

  • H. S. Lee (1997), Random effects model for count data, Comm. Statist. A Theory Methods, 26, 1893–1904.

    MATH  Google Scholar 

  • J. T. Lee (1993), Efficiency of MINQE for arbitrary distribution under one-way random effects model, Korean J. Appl. Statist., 6, 355–37.

    Google Scholar 

  • J. T. Lee and B. C. Kim (1989), An efficient method for computing MINQUE estimators in the mixed models, J. Korean Statist. Soc., 18, 4–12.

    MathSciNet  Google Scholar 

  • K. R. Lee and C. H. Kapadia (1991), Restricted maximum likelihood estimation under Eisenhart model III, Statist. Neerland., 45, 271–282.

    MATH  MathSciNet  Google Scholar 

  • K. R. Lee and C. H. Kapadia (1992), Mean squared error efficient estimators of the variance components, Metrika, 39, 21–26.

    Article  MathSciNet  Google Scholar 

  • P. M. Lee (1998), Bayesian Statistics, 2nd ed., Arnold, London.

    Google Scholar 

  • C.Y. Lin and A. J. McAllister (1984), Monte Carlo comparison of four methods for estimation of genetic parameters in the univariate case, J. Dairy Sci., 67, 2389–2398.

    Article  Google Scholar 

  • X. Lin (1997), Variance components in generalized linear models with random effects, Biometrika, 34, 309–326.

    Article  Google Scholar 

  • D. V. Lindley and A. F. M. Smith (1972), Bayes estimates for the linear model (with discussion), J. Roy. Statist. Soc. Ser. B, 34, 1–41.

    MATH  MathSciNet  Google Scholar 

  • M. J. Lindstrom and D. M. Bates (1988), Newton-Raphson and EM algorithms for linear mixed effects models for repeated measures data, J. Amer. Statist. Assoc., 83, 1014–1022.

    Article  MATH  MathSciNet  Google Scholar 

  • R. C. Littell, G. A. Milliken, W. W. Stroup, and R. D. Wolfinger (1996), SAS System for Mixed Models, SAS Institute, Cary, NC.

    Google Scholar 

  • L.-M. Liu and J. Senturia (1975), The Distribution of MINQUE Estimators, Technical Report 406, Department of Statistics, University of Wisconsin, Madison, WI.

    Google Scholar 

  • L.-M. Liu and J. Senturia (1977), Computation of MINQUE ariance components estimates, J. Amer. Statist. Assoc., 72, 867–868.

    Article  MATH  MathSciNet  Google Scholar 

  • N. T. Longford (1987), A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested random effects, Biometrika, 74, 817–827.

    Article  MATH  MathSciNet  Google Scholar 

  • N. T. Longford (1993), Random Coefficient Models, Oxford University Press, New York.

    MATH  Google Scholar 

  • J. D. Malley (1986), Optimal Unbiased Estimation of Variance Components, Lecture Notes in Statistics 39, Springer-Verlag, New York.

    MATH  Google Scholar 

  • H. Massam and J. Muller (1985), The nonnegative MINQUE estimate, J. Multivariate Anal., 16, 253–259.

    Article  MATH  MathSciNet  Google Scholar 

  • T. Mathew (1984), On nonnegative quadratic unbiased estimability of variance components, Ann. Statist., 12, 1566–1569.

    MATH  MathSciNet  Google Scholar 

  • T. Mathew (1987), On the characterization of nonnegative estimable linear combinations of variance components, Statistics, 18, 227–236.

    MATH  MathSciNet  Google Scholar 

  • T. Mathew, B. K. Sinha, and B. C. Sutradhar (1992a), Nonnegative estimation of variance components in unbalanced mixed models with two variance components, J. Multivariate Anal., 42, 77–101.

    Article  MATH  MathSciNet  Google Scholar 

  • T. Mathew, B. K. Sinha, and B. C. Sutradhar (1992b), Nonnegative estimation of variance components in general balanced mixed models, in A. Md. E. Saleh, ed., Nonparametric Statistics and Related Topics, Elsevier, New York, 281–295.

    Google Scholar 

  • B. W. McDonald (1994), Two random effects models for multivariate binary data, Biometrics, 50, 164–172.

    Article  MATH  Google Scholar 

  • P. McCullagh and J. Nelder (1989), Generalized Linear Models, 2nd ed., Chapman and Hall, London.

    MATH  Google Scholar 

  • C. E. McCulloch and S. R. Searle (2001), Generalized, Linear, and Mixed Models, Wiley, New York.

    MATH  Google Scholar 

  • R. A. McLean and W. L. Saunders (1988), Approximating degrees of freedom for standard errors in mixed linear models, in ASA Proceedings of Statistical Computing Section, American Statistical Association, Arlington, VA, 50–59.

    Google Scholar 

  • J. J. Miller (1977), Asymptotic properties of maximum likelihood estimates in the mixed model of the analysis of variance, Ann. Statist., 5, 746–762.

    MATH  MathSciNet  Google Scholar 

  • J. J. Miller (1979), Maximum likelihood estimation of variance components (a Monte Carlo study), J. Statist. Comput. Simul., 8, 175–190.

    Google Scholar 

  • S. K. Mitra (1972), Another look at Rao’s MINQUE of variance components, Bull. Internat. Statist. Inst., 44, 279–283.

    Google Scholar 

  • C. H. Morrel (1998), Likelihood ratio testing of variance components in the linear mixed-effects model using restricted maximum likelihood, Biometrics, 54, 1560–1568.

    Article  Google Scholar 

  • C. N. Morris (1995), Hierarchical models for educational data: An Overview, J. Educ. Statist., 20, 190–200.

    Article  Google Scholar 

  • Y. Ochi and R. L. Prentice (1984), Likelihood inference in a correlated probit regression model, Biometrika, 71, 531–543.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Olsen, J. Seely, and D. Birkes (1976), Invariant quadratic unbiased estimation for two variance components, Ann. Statist., 4, 878–890.

    MATH  MathSciNet  Google Scholar 

  • Y. Omori (1997), Comparing two means in count models having random effects, Statist. Probab. Lett., 31, 225–235.

    Article  MathSciNet  Google Scholar 

  • J. Öfversten (1993), Exact tests for variance components in unbalanced mixed linear models, Biometrics, 49, 45–57.

    Article  MATH  MathSciNet  Google Scholar 

  • H. D. Patterson and R. Thompson (1971), Recovery of inter-block information when block sizes are unequal, Biometrika, 58, 545–554.

    Article  MATH  MathSciNet  Google Scholar 

  • H. D. Patterson and R. Thompson (1975), Maximum likelihood estimation of components of variance, in L. C. A. Corsten and T. Postelnicu, eds., Proceedings of the 8th International Biometrics Conference, Editoria Academie, Constanta, Romania, 197–207.

    Google Scholar 

  • D. A. Pierce and D. Peters (1992), Practical use of higher order asymptotics for multiparameter exponential families, J. Roy. Statist. Soc. Ser. B, 54, 701–725.

    MathSciNet  Google Scholar 

  • K. N. Ponnuswamy and J. Subramani (1987), A simplified procedure for calculating MINQUE of variance components, in Modeling and Simulation: Proceedings of the International AMSA Conference, Vol. B, ASMA, New Delhi, 75–90.

    Google Scholar 

  • R. M. Pringle (1974), Some results on the estimation of variance components by MINQUE, J. Amer. Statist. Assoc., 69, 987–989.

    Article  MATH  MathSciNet  Google Scholar 

  • F. Pukelsheim (1974), Schätzen von Mittelwert und Streuungsmatrix in Gauss—Markov Modellen, Diplomarbeit, Albert-Ludwigs-Universität, Freiburg im Breisgau, Germany.

    Google Scholar 

  • F. Pukelsheim (1976), Estimating variance components in linear models, J. Multivariate Anal., 6, 626–629.

    Article  MATH  MathSciNet  Google Scholar 

  • F. Pukelsheim (1977a), Linear Models and Convex Programs: Unbiased Nonnegative Estimation in Variance Components Models, Technical Report 104, Department of Statistics, Stanford University, Stanford, CA.

    Google Scholar 

  • F. Pukelsheim (1977b), Examples for Unbiased Nonnegative Estimation in Variance Components Models, Technical Report 113, Department of Statistics, Stanford University, Stanford, CA.

    Google Scholar 

  • F. Pukelsheim (1977c), Punktschätzungen in linearen statistischen Modellen, Dissertation zur Erlangung des Doktorgrades der Mathematischen, Albert-Ludwigs-Universität, Freiburg im Breisgau, Germany.

    Google Scholar 

  • F. Pukelsheim (1981a), On the existence of unbiased nonnegative estimates of variance-covariance components, Ann. Statist., 9, 293–299.

    MATH  MathSciNet  Google Scholar 

  • F. Pukelsheim (1981b), Linear models and convex geometry: Aspects of nonnegative variance estimation, Math. Oper. Statist. Ser. Statist., 12, 271–286.

    MATH  MathSciNet  Google Scholar 

  • R. L. Quaas and D. C. Bolgiano (1979), Sampling variances of the MINQUE and method 3 estimators of sire components of variance: A numerical comparison, in L. D. Van Vleck and S. R. Searle, eds., Variance Components and Animal Breeding: Proceedings of a Conference in Honor of C. R. Henderson, Cornell University, Ithaca, NY, 99–106.

    Google Scholar 

  • M. Rajagopalan (1980), Bayesian Inference for the Variance Components in Mixed Linear Models, Ph.D. dissertation, Oklahoma State University, Stillwater, OK.

    Google Scholar 

  • M. Rajagopalan and L. D. Broemeling (1983), Bayesian inference for the variance components of the general mixed model, Comm. Statist. A Theory Methods, 12, 701–723.

    MATH  MathSciNet  Google Scholar 

  • C. R. Rao (1970), Estimation of heterocedastic variances in linear models, J. Amer. Statist. Assoc., 65, 161–172.

    Article  MathSciNet  Google Scholar 

  • C. R. Rao (1971a), Estimation of variance and covariance components: MINQUE theory, J. Multivariate Anal., 1, 257–275.

    Article  MathSciNet  Google Scholar 

  • C. R. Rao (1971b), Minimum variance quadratic unbiased estimation of variance components, J. Multivariate Anal., 1, 445–456.

    Article  MathSciNet  MATH  Google Scholar 

  • C. R. Rao (1972), Estimation of variance and covariance components in linear models, J. Amer. Statist. Assoc., 67, 112–115.

    Article  MATH  MathSciNet  Google Scholar 

  • C. R. Rao (1973), Linear Statistical Inference and Its Applications, 2nd ed., Wiley, New York.

    MATH  Google Scholar 

  • C. R. Rao (1974), Projections, generalized inverse and the BLUE, J. Roy. Statist. Soc. Ser. B, 36, 442–448.

    MATH  MathSciNet  Google Scholar 

  • C. R. Rao (1979), MINQUE theory and its relation to ML and RML estimation of variance components, Sankhyā Ser. B, 41, 138–153.

    MATH  Google Scholar 

  • C. R. Rao and J. Kleffé (1980), Estimation of variance components, in P. R. Krishnaiah, ed., Handbook of Statistics, Vol. 1, North-Holland, Amsterdam, 1–40.

    Google Scholar 

  • C. R. Rao and J. Kleffé (1988), Estimation of Variance Components and Applications, North-Holland, Amsterdam.

    MATH  Google Scholar 

  • J. N. K. Rao (1973), On the estimation of heterocedastic variances, Biometrics, 29, 11–24.

    Article  Google Scholar 

  • J. N. K. Rao (1977), Contribution to the discussion of the paper by D. A. Harville, J. Amer. Statist. Assoc., 72, 338–339.

    Article  Google Scholar 

  • J. N. K. Rao and K. Subrahmaniam (1971), Combining independent estimators and estimation in linear regression with unequal variances, Biometrics, 27, 971–990.

    Article  Google Scholar 

  • P. S. R. S. Rao (1977), Theory of the MINQUE: A review, Sankhyā Ser. B, 39, 201–210.

    MATH  Google Scholar 

  • P. S. R. S. Rao (1997), Variance Components Estimation: Mixed Models, Methodologies, and Applications, Chapman and Hall, London.

    MATH  Google Scholar 

  • P. S. R. S. Rao (2001), The MINQUE: Investigations, modifications and extensions, J. Statist. Res., 35-1, 29–34.

    Google Scholar 

  • P. S. R. S. Rao and Y. B. Chaubey (1978), Three modifications of the principle of MINQUE, Comm. Statist. A Theory Methods, 7, 767–778.

    MathSciNet  Google Scholar 

  • P. S. R. S. Rao, J. Kaplan, and W.G. Cochran (1981), Estimators for the one-way random effects model with unequal error variances, J. Amer. Statist. Assoc., 76, 89–97.

    Article  MATH  MathSciNet  Google Scholar 

  • P. S. R. S. Rao and P. Kuranchie (1988), Variance components of linear regression model with a random intercept, Comm. Statist. A Theory Methods, 17, 1011–1026.

    MATH  MathSciNet  Google Scholar 

  • P. S. R. S. Rao and N. Miyawaki (1989), Estimation procedures for unbalanced one-way variance components model, Bull. Internat. Statist. Inst., 2, 243–244.

    Google Scholar 

  • S. Raudenbush and A. S. Bryk (1986), A hierarchical model for studying school effects, Sociol. Educ., 59, 1–17.

    Article  Google Scholar 

  • S. Raudenbush and A. S. Bryk (2002), Hierarchical Linear Models: Applications and Data Analysis Methods, 2nd ed., Sage, Thousand Oaks, CA.

    Google Scholar 

  • D. K. Rich and K. G. Brown (1979), Estimation of variance components using residuals: Some empirical evidence, in in L. D. Van Vleck and S. R. Searle, eds., Variance Components and Animal Breeding: Proceedings of a Conference in Honor of C. R. Henderson, Cornell University, Ithaca, NY, 139–154.

    Google Scholar 

  • A. M. Richardson and A. H. Welsh (1994), Asymptotic properties of restricted maximum likelihood (REML) estimates for hierarchical mixed linear models, Australian J. Statist., 36, 31–43.

    MATH  MathSciNet  Google Scholar 

  • A. M. Richardson and A. H. Welsh (1995), Robust restricted maximum likelihood in mixed linear models, Biometrics, 51, 1429–1439.

    Article  MATH  Google Scholar 

  • D. L. Robinson (1984), The REML Program Manual, unpublished report; available from the author.

    Google Scholar 

  • D. L. Robinson (1987), Estimation and use of variance components, Statistician, 36, 3–14.

    Article  Google Scholar 

  • G. K. Robinson (1991), The BLUP is a good thing: The estimation of random effects, Statist. Sci., 6, 15–51.

    MATH  MathSciNet  Google Scholar 

  • D. M. Rocke (1983), Robust statistical analysis of interlaboratory studies, Biometrika, 70, 421–431.

    Article  MathSciNet  Google Scholar 

  • S. H. Rosenberg and C. A. Rhode (1971), Robustness properties of variance component estimates when the underlying model is incorrectly specified, Biometrics, 27, 1091–1097.

    Article  Google Scholar 

  • J. S. Rosenthal (1995), Rates of convergence for Gibbs sampling for variance components models, Ann. Statist., 23, 740–761.

    MATH  MathSciNet  Google Scholar 

  • P. Rudolph (1976), Bayesian estimation in the linear models under different assumptions about the covariance structure; variance components model, equicorrelation model, Math. Oper. Statist. Ser. Statist., 7, 649–665.

    MathSciNet  Google Scholar 

  • F. E. Satterthwaite (1946), An approximate distribution of estimates of variance components, Biometrics Bull., 2, 110–114.

    Article  Google Scholar 

  • L. R. Schaeffer (1973), Factors Affecting the Accuracy of Variance Components Estimation, Ph.D. dissertation, Cornell University, Ithaca, NY.

    Google Scholar 

  • R. Schall (1991), Estimation in generalized linear models with random effects, Biometrika, 78, 719–727.

    Article  MATH  Google Scholar 

  • H. Scheffé (1959), The Analysis of Variance, Wiley, New York.

    MATH  Google Scholar 

  • M. L. Schervish (1992), Bayesian analysis of linear models, in J. M. Bernardo, J. V. Berger, A. P. David, and A. F. M. Smith, eds., Bayesian Statistics IV, Oxford University Press, New York, 419–434.

    Google Scholar 

  • S. R. Searle (1968), Another look at Henderson’s methods of estimating variance components, Biometrics, 24, 749–778.

    Article  Google Scholar 

  • S. R. Searle (1970), Large sample variances of maximum likelihood estimators of variance components using unbalanced data, Biometrics, 26, 505–525.

    Article  Google Scholar 

  • S. R. Searle (1971a), Topics in variance components estimation, Biometrics, 27, 1–76.

    Article  MathSciNet  Google Scholar 

  • S. R. Searle (1971b), Linear Models, Wiley, New York.

    MATH  Google Scholar 

  • S. R. Searle, G. Casella, and C. E. McCulloch (1992), Variance Components, Wiley, New York.

    MATH  Google Scholar 

  • J. Seely (1970a), Linear spaces and unbiased estimation, Ann. Math. Statist., 41, 1725–1734.

    MathSciNet  MATH  Google Scholar 

  • J. Seely (1970b), Linear spaces and unbiased estimation: Applications to the mixed linear model, Ann. Math. Statist., 41, 1735–1748.

    MathSciNet  MATH  Google Scholar 

  • J. Seely (1971), Quadratic subspaces and complements, Ann. Math. Statist., 42, 710–721.

    MathSciNet  MATH  Google Scholar 

  • J. Seely (1972), Completeness for a family of multivariate normal distributions, Ann. Math. Statist., 43, 1644–1647.

    MathSciNet  MATH  Google Scholar 

  • J. Seely (1977), Minimal sufficient statistics and completeness for multivariate normal families, Sankhyā Ser. A, 39, 170–185.

    MATH  MathSciNet  Google Scholar 

  • S. G. Self and K.-Y. Liang (1987), Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions, J. Amer. Statist. Assoc., 82, 605–610.

    Article  MATH  MathSciNet  Google Scholar 

  • D. W. Smith and L. W. Murray (1984), An alternative to Eisenhart’s Model II and mixed model in the case of negative variance estimates, J. Amer. Statist. Assoc., 79, 145–151.

    Article  MathSciNet  Google Scholar 

  • P. J. Solomon and D. R. Cox (1992), Nonlinear component of variance models, Biometrika, 79, 1–11.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Stiratelli, N. M. Laird, and J. H. Ware (1984), Random-effects models for serial observations with binary response, Biometrics, 40, 961–971.

    Article  Google Scholar 

  • D. O. Stram and J.W. Lee (1994), Variance components testing in the longitudinal mixed effects model, Biometrics, 50, 1171–1177.

    Article  MATH  Google Scholar 

  • W. W. Stroup and S. D. Kachman (1994), Generalized linear mixed models: An overview, in J. R. Schewenke, ed., Proceedings of the 1994 Kansas State University Conference on Applied Statistics in Agriculture, Kansas State University, Manhattan, KS, 82–98.

    Google Scholar 

  • J. Subramani (1991), On invariant quadratic unbiased estimation of variance components, Comm. Statist. A Theory Methods, 20, 1705–1730.

    MATH  MathSciNet  Google Scholar 

  • L. Sun, J. S. J. Hsu, I. Guttman, and T. Leonard (1996), Bayesian methods for variance component models, J. Amer. Statist. Assoc., 91, 743–752.

    Article  MATH  MathSciNet  Google Scholar 

  • W. Y. Tan, M. A. Tabatabai, and N. Balakrishnan (1988), Harmonic mean aproach to unbalanced random effects model under heteroscedasticity, Comm. Statist. A Theory Methods, 17, 1261–1286.

    MATH  Google Scholar 

  • C. M. Theobold, M. Z. Firat, and R. Thompson (1997), Gibbs Sampling, adaptive rejection sampling and robustness to prior specification for a mixed linear model, Genetic Selection Evolution, 29, 57–72.

    Google Scholar 

  • J. D. Thomas and R. A. Hultquist (1978), Interval estimation for the unbalanced case of the one-way random effects model, Ann. Statist., 6, 582–587.

    MATH  MathSciNet  Google Scholar 

  • R. Thompson (1975), Anote on the W transformation, Technometrics, 17, 511–512.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Thompson (1977a), The estimation of heritability with unbalanced data I: Observations available on parents and offspring, Biometrics, 33, 485–495.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Thompson (1977b), The estimation of heritability with unbalanced data II: Data availability on more than two generations, Biometrics, 33, 497–504.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Thompson (1980), Maximum likelihood estimation of variance components, Math. Oper. Statist. Ser. Statist., 11, 545–561.

    MATH  Google Scholar 

  • R. Thompson and Meyer, K. (1986), Estimation of variance components: What is missing in the EM algorithm?, J. Statist. Comput. Simul., 24, 215–230.

    MathSciNet  Google Scholar 

  • W. A. Thompson, Jr. (1962), The problem of negative estimates of variance components, Ann. Math. Statist., 33, 273–289.

    MathSciNet  MATH  Google Scholar 

  • W.A. Thompson, Jr. and J. R. Moore (1963), Non-negative estimates of variance components, Technometrics, 5, 441–450.

    Article  MATH  Google Scholar 

  • I. B. Thomsen (1975), Testing hypotheses in unbalanced variance components models for two-way layouts, Ann. Statist., 3, 257–265.

    MATH  MathSciNet  Google Scholar 

  • P. B. Topham (1966), Diallel analysis involving maternal and paternal interaction effects, Heredity, 21, 665–674.

    Google Scholar 

  • E. C. Townsend and S. R. Searle (1971), Best quadratic unbiased estimation of variance components from unbalanced data in the one-way classification, Biometrics, 27, 643–657.

    Article  Google Scholar 

  • W. H. Vandaele and S. R. Chowdhury (1971), A revised method of scoring, Statist. Neerland., 25, 101–112.

    Article  MATH  Google Scholar 

  • K. Venkateswarlu (1996), Estimations of Genetic Variance Components in Diallel Cross Models with Unbalanced Data, Ph.D. dissertation, University of Madras, Madras, India.

    Google Scholar 

  • K. Venkateswarlu and K. N. Ponnuswamy (1998), Estimation of variance components based on biomodel of diallel crosses (balanced), Comm. Statist. A Theory Methods, 27, 139–152.

    MATH  MathSciNet  Google Scholar 

  • K. Venkateswarlu, K. N. Ponnuswamy, and M. R. Srinivasan (1998), Estimation of variance components based on diallel model, Math. Biol. Sci., 150, 105–112.

    MATH  Google Scholar 

  • A. P. Verbyla (1993), Modeling variance heterogeneity: Residual maximum likelihood and diagnostics, J. Roy. Statist. Soc. Ser. B, 55, 82–86.

    MathSciNet  Google Scholar 

  • L. R. Verdooren (1980), On estimation of variance components, Statist. Neerland., 34, 83–106.

    MATH  MathSciNet  Google Scholar 

  • L. R. Verdooren (1988), Least squares estimators and non-negative estimators of variance components, Comm. Statist. A Theory Methods, 17, 1027–1051.

    MathSciNet  Google Scholar 

  • J. Volaufová and V. Witkovsky (1991), Least squares and minimum MSE estimators of variance components in mixed linear models, Biometrical J., 33, 923–936.

    Article  MATH  MathSciNet  Google Scholar 

  • E. F. Vonesh and V. M. Chinchilli (1997), Linear and Nonlinear Models for the Analysis of Repeated Measurements, Marcel Dekker, New York.

    MATH  Google Scholar 

  • C. S. Wang, J. J. Rutledge, and D. Gianola (1993), Marginal inference about variance components in a mixed linear model using Gibbs sampling, Genetic Selection Evolution, 25, 41–62.

    Google Scholar 

  • T. Wansbeck (1980) Aregression interpretation of the computation of MINQUE variance component estimates, J. Amer. Statist. Assoc., 75, 375–376.

    Article  MathSciNet  Google Scholar 

  • R. E. Weiss, Y. Wang, and J. G. Ibrahim (1997), Predictive model selection for repeated measures random effects models using Bayes factors, Biometrics, 53, 592–602.

    Article  MATH  Google Scholar 

  • S. J. Welham and R. Thompson (1997), Likelihood ratio tests for fixed model terms using residual maximum likelihood, J. Roy. Statist. Soc. Ser. B, 59, 701–714.

    Article  MATH  MathSciNet  Google Scholar 

  • P. H. Westfall (1986), Asymptotic normality of the ANOV Aestimates of components of variance in the non-normal hierarchical mixed model, Ann. Statist., 14, 1572–1582.

    MATH  MathSciNet  Google Scholar 

  • P. H. Westfall (1987), A comparison of variance component estimates for arbitrary underlying distributions, J. Amer. Statist. Assoc., 82, 866–874.

    Article  MATH  MathSciNet  Google Scholar 

  • P. H. Westfall (1989), Power comparisons for invariant variance ratio tests in mixed ANOVA models, Ann. Statist., 17, 318–326.

    MATH  MathSciNet  Google Scholar 

  • P. H. Westfall and R. H. Bremer (1994), Efficiency properties of cell means variance component estimates, J. Statist. Plann. Inference, 38, 159–178.

    Article  MATH  MathSciNet  Google Scholar 

  • G.Y. Wong and W. M. Mason (1985), The hierarchical logistic regression model for multilevel analysis, J. Amer. Statist. Assoc., 80, 513–524.

    Article  Google Scholar 

  • F. Yates (1934), The analysis of multiple classifications with unequal numbers in the different classes, J. Amer. Statist. Assoc., 29, 51–66.

    Article  Google Scholar 

  • F. Yates (1947), Analysis of data from all possible reciprocal crosses between sets of parental lines, Heredity, 1, 287–302.

    Google Scholar 

  • C. H. Yuan (1977), A Least Squares Approach to Quadratic Unbiased Estimation of Variance Components in General Mixed Model, Ph.D. dissertation, North Carolina State University, Raleigh, NC.

    Google Scholar 

  • S. L. Zeger and M. R. Karim (1991), Generalized linear models with random effects: A Gibbs sampling approach, J. Amer. Statist. Assoc., 86, 79–86.

    Article  MathSciNet  Google Scholar 

  • S. L. Zeger, K.-Y. Liang, and D. S. Albert (1988), Models for longitudinal data: A generalized estimating equation approach, Biometrics, 44, 1049–1060.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Boston

About this chapter

Cite this chapter

(2005). Some General Methods for Making Inferences about Variance Components. In: Analysis of Variance for Random Models. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4425-3_2

Download citation

Publish with us

Policies and ethics