Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 232))

Abstract

There are several inequivalent definitions of what it means to quantize a symplectic map on a symplectic manifold (M, ω). One definition is that the quantization is an automorphism of a *-algebra associated to (M, ω). Another is that it is unitary operator U χ on a Hilbert space associated to (M, ω), such that AU *χ AU χ defines an automorphism of the alge of observables. A yet stronger one, common in partial differential equations, is that U χ should be a Fourier integral operator associated to the graph of χ. We compare the definiti in the case where (M, ω) is a compact Kähler manifold. The main result is a Toeplitz analogue of the Duistermaat—Singer theorem on automorphisms of pseudodifferential algebras, and an extension which does not assume H 1(M,ℂ) = {0}. We illustrate with examples from quantum maps.

This research was partially supported by NSF grant DMS-0071358 and by the Clay Mathematics Institute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. A. Berezin, Covariant and Contravariant symbols of operators, Math. USSR Izvest., 6 (1972), 1117–1151.

    Article  Google Scholar 

  2. F. A. Berezin, Quantization, Math. USSR Izvest., 8 (1974), 1109–1165.

    Article  MATH  Google Scholar 

  3. P. Bleher, B. Shiffman, and S. Zelditch, Universality and scaling of zeros on symplectic manifolds, in Random Matrix Models and Their Applications, Mathematical Sciences Research Institute Publications, Vol. 40, Cambridge University Press, Cambridge, UK, 2001, 31–69.

    Google Scholar 

  4. L. Boutet de Monvel, Star-produits et star-algèbres holomorphes, in G. Dito and D. Sternheimer, eds., Conférence Moshé Flato 1999: Quantization, Deformations, and Symmetries, Vol. I, 1999, Mathematical Physics Studies, Vol. 21, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000, 109–120.

    Google Scholar 

  5. L. Boutet de Monvel, Star produits holomorphes, in Séminaire: Equations aux Dérivées Partielles 1998–1999, Centre de Mathématiques, École Polytechnique, Palaiseau, France, 1999, Exp. II.

    Google Scholar 

  6. L. Boutet de Monvel, Complex star algebras, Math. Phys. Anal. Geom., 2-2 (1999), 113–139.

    Article  MathSciNet  Google Scholar 

  7. L. Boutet de Monvel, Toeplitz operators: An asymptotic quantization of symplectic cones, in Stochastic Processes and Their Applications in Mathematics and Physics (Bielefeld, 1985), Mathematics and Its Applications, Vol. 61, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1990, 95–106.

    Google Scholar 

  8. L. Boutet de Monvel, Related semi-classical and Toeplitz algebras, in Deformation Quantization (Strasbourg, 2001), IRMA Lectures in Mathematics and Theoretical Physics, Vol. 1, de Gruyter, Berlin, 2002, 163–190.

    Google Scholar 

  9. L. Boutet de Monvel and V. Guillemin, The Spectral Theory of Toeplitz Operators, Annals of Mathematics Studies, Vol. 99, Princeton University Press, Princeton, NJ, 1981.

    MATH  Google Scholar 

  10. L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegö, Astérisque, 34–35 (1976), 123–164.

    Google Scholar 

  11. A. Bouzouina and S. De Biévre, Equipartition of the eigenfunctions of quantized ergodic maps on the torus, Comm. Math. Phys., 178-1 (1996), 83–105.

    Article  Google Scholar 

  12. A. Cattaneo and G. Felder, A path integral apporach to the Kontsevich quantization formula, Comm. Math. Phys., 212 (2000), 91–611.

    Article  MathSciNet  Google Scholar 

  13. L. Charles, Berezin-Toeplitz operators, a semi-classical approach, Comm. Math. Phys., 239-1–2 (2003), 1–28.

    Article  MathSciNet  Google Scholar 

  14. A. Connes, Non-Commutative Geometry, Academic Press, New York, 1994.

    Google Scholar 

  15. H. Delin, Pointwise estimates for the weighted Bergman projection kernel in ℂn, using a weighted L 2 estimate for the \( \bar \partial \) equation, Ann. Inst. Fourier (Grenoble), 48 (1998), 967–997.

    MATH  MathSciNet  Google Scholar 

  16. S. De Biévre and H. Degli Esposti, Egorov theorems and equidistribution of eigenfunctions for the quantized sawtooth and baker maps, Ann. Inst. H. Poincaré Phys. Th’eoret., 69-1 (1998), 1–30.

    Google Scholar 

  17. M. Degli Esposti, S. Graffi, and S. Isola, Classical limit of the quantized hyperbolic toral automorphisms, Comm. Math. Phys., 167-3 (1995), 471–507.

    Article  MathSciNet  Google Scholar 

  18. M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit, London Math Society Lecture Notes, Vol. 268, Cambridge University Press, Cambridge, UK, 1999.

    MATH  Google Scholar 

  19. J. J. Duistermaat and I. M. Singer, Order preserving isomorphisms between algebras of pseudo-differential operators, Comm. Pure Appl. Math., XXVIV (1976), 39–47.

    Article  MathSciNet  Google Scholar 

  20. J. J. Duistermaat and I. M. Singer, Isomorphismes entres algebres d’operateurs pseudo-differentiels, in Seminaire Goulauoic-Lions-Schwartz Expose XXIV, Centre de Mathématiques, École Polytechnique, Palaiseau, France, 1975.

    Google Scholar 

  21. P. Etingof and D. Kazhdan, Quantization of Lie bi-algebras I, Selecta Math. (N.S.), 2 (1996), 1–41.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Gromov, G. Henkin, and M. Shubin, Holomorphic L 2 functions on coverings of pseudoconvex manifolds, Geom. Functional Anal., 8-3 (1998), 552–585

    Article  MathSciNet  Google Scholar 

  23. V. Guillemin, Star products on compact pre-quantizable symplectic manifolds, Lett. Math. Phys., 35 (1995), 85–89.

    Article  MATH  MathSciNet  Google Scholar 

  24. V. Guillemin and S. Sternberg, Geometric Asymptotics, Mathematical Surveys, Vol. 14, American Mathematical Society, Providence, RI, 1977.

    MATH  Google Scholar 

  25. J. H. Hannay and M.V. Berry, Quantization of linear maps on a torus-Fresnel diffraction by a periodic grating, Phys. D, 1-3 (1980), 267–290.

    Article  MathSciNet  Google Scholar 

  26. J. W. Helton, An operator algebra approach to partial differential equations: Propagation of singularities and spectral theory, Indiana Univ. Math. J., 26-6 (1977), 997–1018.

    Article  MathSciNet  Google Scholar 

  27. R. Howe, Quantum mechanics and partial differential equations, J. Functional Anal., 38-2 (1980), 188–254.

    Article  MathSciNet  Google Scholar 

  28. A. V. Karabegov and M. Schlichenmaier, Identification of Berezin-Toeplitz deformation quantization, J. Reine Angew. Math., 540 (2001), 49–76.

    MATH  MathSciNet  Google Scholar 

  29. J. P. Keating, The cat maps: Quantum mechanics and classical motion, Nonlinearity, 4-2 (1991), 309–341.

    Article  MathSciNet  Google Scholar 

  30. M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys., 66 (2003), 157–216.

    Article  MATH  MathSciNet  Google Scholar 

  31. M. Kontsevich, Deformation quantization of algebraic varieties, Lett. Math. Phys., 56-3 (2001) (EuroConference Moshé Flato 2000 (Dijon), Part III), 271–294.

    Article  MathSciNet  Google Scholar 

  32. J. Marklof and Z. Rudnick, Quantum unique ergodicity for parabolic maps, Geom. Functional Anal., 10-6 (2000), 1554–1578.

    Article  MathSciNet  Google Scholar 

  33. H. Narnhofer, Ergodic properties of automorphisms on the rotation algebra, Rep. Math. Phys., 39-3 (1997), 387–406.

    Google Scholar 

  34. S. Nonnenmacher, unpublished note, 2003.

    Google Scholar 

  35. N. Reshetikhin and L. Takhtajan, Deformation quantization of Kähler manifolds, in L. D. Faddeev’s Seminar on Mathematical Physics, American Mathematical Society Translation Series 2, Vol. 201, American Mathematical Soceity, Providence, RI, 2000, 257–276; math.QA/9907171, 1999.

    Google Scholar 

  36. M. Schlichenmaier, Berezin-Toeplitz quantization of compact Kähler manifolds, in Quantization, Coherent States, and Poisson Structures (Białowieża, 1995), Polish Scientific Publishers PWN, Warsaw, 1998, 101–115.

    Google Scholar 

  37. M. Schlichenmaier, Deformation quantization of compact Kähler manifolds by Berezin-Toeplitz quantization, in G. Dito and D. Sternheimer, eds., Conférence Moshé Flato 1999: Quantization, Deformations, and Symmetries, Vol. II, 1999, Mathematical Physics Studies, Vol. 22, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000, 289–306.

    Google Scholar 

  38. M. Schlichenmaier, Berezin-Toeplitz quantization and Berezin transform, in S. Graffi and A. Martinez, eds,m Long Time Behaviour of Classical and Quantum Systems: Proceedings of the Bologna Aptex International Conference, Bologna, Italy 13–17 September 1999, Series on Concrete and Applicable Mathematics, Vol. 1, World Scientific, River Edge, NJ, 2001.

    Google Scholar 

  39. B. Shiffman and S. Zelditch, work in progress.

    Google Scholar 

  40. B. Shiffman, T. Tate, and S. Zelditch, Harmonic analysis on toric varieties, in J. Bland, K.-T. Kim, and S. G. Krantz, eds., Explorations in Complex and Riemannian Geometry: A Volume Dedicated to Robert E. Greene, Contemporary Mathematics, Vol. 332, American Mathematical Society, Providence, RI, 2003, 267–286.

    Google Scholar 

  41. D. Tamarkin, Another proof of the M. Kontsevich formality thoerem, 1998, math/9803025.

    Google Scholar 

  42. A. Weinstein and P. Xu, Hochschild cohomology and characteristic classes for star-products, in Geometry of Differential Equations, American Mathematical Society Translation Series 2, Vol. 186, American Mathematical Society, Providence, RI, 1998, 177–194.

    Google Scholar 

  43. S. Zelditch, Index and dynamics of quantized contact transformations, Ann. Inst. Fourier (Grenoble), 47 (1997), 305–363.

    MATH  MathSciNet  Google Scholar 

  44. S. Zelditch, Szegö kernels and a theorem of Tian, Internat. Math. Res. Notices, 6 (1998), 317–331.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Boston

About this chapter

Cite this chapter

Zelditch, S. (2005). Quantum maps and automorphisms. In: Marsden, J.E., Ratiu, T.S. (eds) The Breadth of Symplectic and Poisson Geometry. Progress in Mathematics, vol 232. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4419-9_22

Download citation

Publish with us

Policies and ethics