Skip to main content

Poisson homotopy algebra: An idiosyncratic survey of homotopy algebraic topics related to Alan’s interests

  • Chapter
  • 1523 Accesses

Part of the book series: Progress in Mathematics ((PM,volume 232))

Abstract

Homotopy algebra is playing an increasing role in mathematical physics. Especially in the Hamiltonian and Lagrangian settings, it is intimately related to some of Alan’s interests, e.g., Courant and Lie algebroids. There is a comparatively long history of such structure in cohomological physics in terms of equations that hold mod exact terms (typically, divergences) or only “on shell,” meaning modulo the Euler—Lagrange equations of “motion”; more recently, higher homotopies have come into prominence. Higher homotopies were developed first within algebraic topology and may not yet be commonly available tools for symplectic geometers and mathematical physicists.

This is an expanded version of my talk at Alanfest, planned as a gentle introduction to the basic point of view with a variety of applications to substantiate its relevance. Most technical details are supplied by references to the original work or to [MSS02].

This research was supported in part by NSF Focussed Research Grant DMS 0139799.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. A. Berends, G. J. H. Burgers, and H. van Dam, On spin three selfinteractions, Z. Phys. C, 24 (1984), 247–254.

    Article  MathSciNet  Google Scholar 

  2. F.A. Berends, G. J. H. Burgers, and H. van Dam, On the theoretical problems in constructing intereactions involving higher spin massless particles, Nuclear Phys. B, 260 (1985), 295–322.

    Article  MathSciNet  Google Scholar 

  3. F. A. Berends, G. J. H. Burgers, and H. van Dam, Explicit construction of conserved currents for massless fields of arbitrary spin, Nuclear Phys. B, 271 (1986), 429–441.

    MathSciNet  Google Scholar 

  4. I. A. Batalin and E. S. Fradkin, Ageneralized canonical formalism and quantization of reducible gauge theories, Phys. Lett., 122B (1983), 157–164.

    MathSciNet  Google Scholar 

  5. C. Becchi, A. Rouet, and R. Stora, Renormalization of the abelian Higgs-Kibble model, Comm. Math. Phys. 42 (1975), 127–162.

    Article  MathSciNet  Google Scholar 

  6. G. J. H. Burgers, On the Construction of Field Theories for Higher Spin Massless Particles, Ph.D. thesis, Rijksuniversiteit te Leiden, Leiden, the Netherlands, 1985.

    Google Scholar 

  7. I. A. Batalin and G. S. Vilkovisky, Quantization of gauge theories with linearly dependent generators, Phys. Rev. D, 28 (1983), 2567–2582.

    Article  MathSciNet  Google Scholar 

  8. I. A. Batalin and G. S. Vilkovisky, Closure of the gauge algebra, generalized Lie equations and Feyneman rules, Nuclear Phys. B, 234 (1984), 106–124.

    Article  MathSciNet  Google Scholar 

  9. J. C. Baez and A. S. Crans, Higher-dimensional algebra VI: Lie 2-algebras, preprint, 2003; math.QA/0307263.

    Google Scholar 

  10. C. Chevalley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., 63 (1948), 85–124.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Cattaneo and G. Felder, A path integral approach to the Kontsevich quantization formula, Comm. Math. Phys., 212-3 (2000), 591–611

    Article  MathSciNet  Google Scholar 

  12. M. Daily, L-infinity structures on spaces with 3 one-dimensional components, preprint, 2002; math.QA/0212030.

    Google Scholar 

  13. E. S. Fradkin and T. E. Fradkina, Quantization of relativistic systems with boson and fermion first and second class constraints, Phys. Lett., 72B (1978), 343–348.

    Google Scholar 

  14. R. Fulp, T. Lada, and J. Stasheff, Noether’s variational theorem II and the BV formalism, Suppl. Rend. Circ. Mat. Palermo Ser. II, 71 (2002), 115–126.

    Google Scholar 

  15. R. Fulp, T. Lada, and J. Stasheff, Sh-Lie algebras induced by gauge transformations, Comm. Math. Phys., 231 (2002), 25–43.

    Article  MATH  MathSciNet  Google Scholar 

  16. L. D. Fade’ev and V. N. Popov, Feynman diagrams for the Yang-Mills field, Phys. Lett., 25B (1967), 29–30.

    Google Scholar 

  17. A. Fialowski and M. Penkava, Versal deformations of three dimensional lie algebras as L-infinity algebras, preprint, 2003; math.RT/0303346.

    Google Scholar 

  18. K. Fukaya, Floer homology, A -categories and topological field theory, in J. Andersen, J. Dupont, H. Pertersen, and A. Swan, eds., Geometry and Physics, Lecture Notes in Pure and Applied Mathematics, Vol. 184, Marcel Dekker, New York, 1995, 9–32 (notes by P. Seidel).

    Google Scholar 

  19. E. S. Fradkin and G. S. Vilkovisky, Quantization of relativistic systems with constraints, Phys. Lett., 55B (1975), 224–226.

    MathSciNet  Google Scholar 

  20. M. Gerstenhaber, The cohomology structure of an associative ring, Ann. Math., 78 (1963), 267–288.

    Article  MathSciNet  Google Scholar 

  21. V. K. A. M. Gugenheim and L. Lambe, Applications of perturbation theory to differential homological algebra I, Illinois J. Math., 33 (1989), 556–582.

    MathSciNet  Google Scholar 

  22. V. K. A. M. Gugenheim, L. Lambe, and J. Stasheff, Algebraic aspects of Chen’s twisting cochain, Illinois J. Math., 34 (1990), 485–502.

    MATH  MathSciNet  Google Scholar 

  23. V. K. A. M. Gugenheim and J. D. Stasheff, On perturbations and A -structures, Bull. Soc. Math. Belgium, 38 (1986), 237.

    MATH  MathSciNet  Google Scholar 

  24. V. K. A. M. Gugenheim, On a perturbation theory for the homology of a loop space, J. Pure Appl. Algebra, 25 (1982), 197–207.

    Article  MATH  MathSciNet  Google Scholar 

  25. J. Huebschmann and T. Kadeishvili, Small models for chain algebras, Math. Z., 207 (1991), 245–280.

    Article  MATH  MathSciNet  Google Scholar 

  26. J. Huebschmann and J. Stasheff, Formal solution of the master equation via HPT and deformation theory, Forum Math., 14 (2002), 847–868.

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Henneaux and C. Teitelboim, Quantization of Gauge Systems, Princeton University Press, Princeton, NJ, 1992.

    MATH  Google Scholar 

  28. J. Huebschmann, Perturbation Theory and Small Models for the Chains of Certain Induced Fibre Spaces, Habilitationsschrift, 1984.

    Google Scholar 

  29. J. Huebschmann, Poisson cohomology and quantization, J. Reine Angew. Math., 408 (1990), 57–113.

    MATH  MathSciNet  Google Scholar 

  30. N. Ikeda, Two-dimensional gravity and nonlinear gauge theory, Ann. Phys., 235 (1994), 435–464.

    Article  MATH  Google Scholar 

  31. H. Kajiura, Noncommutative Homotpy Algebras Associated with Open Strings, Dissertation, University of Tokyo, Tokyo, 2003.

    Google Scholar 

  32. L. Kjeseth, Ahomotopy Lie-Rinehart resolution and classical BRST cohomology, Homology Homotopy Appl., 3-1 (2001), 165–192 (electronic).

    MathSciNet  Google Scholar 

  33. L. Kjeseth, Homotopy Rinehart cohomology of homotopy Lie-Rinehart pairs, Homology Homotopy Appl., 3-1 (2001), 139–163 (electronic).

    MathSciNet  Google Scholar 

  34. Y. Kosmann-Schwarzbach, Quasi, twisted, and all that... in Poisson geometry and Lie algebroid theory, in J. E. Marsden and T. S. Ratiu, eds., The Breadth of Symplectic and Poisson Geometry: Festschrift in Honor of Alan Weinstein (this volume), Progress in Mathematics, Vol. 232, Birkhäuser, Boston, 2005, 363–390.

    Google Scholar 

  35. S. Lie, Theorie der Tranformationensgruppen, Teubner, Leipzig, 1890.

    Google Scholar 

  36. M. Markl, S. Shnider, and J. Stasheff, Operads in Algebra, Topology and Physics, Mathematical Surveys and Monographs, Vol. 96, American Mathematical Society, Providence, RI, 2002.

    MATH  Google Scholar 

  37. C. Nash, Topology and physics: A historical essay, in I. M. James, ed., A History of Topology, Elsevier-North Holland, Amsterdam, 1998, 359–415.

    Google Scholar 

  38. E. Noether, Invariante variationsprobleme, Nachr. König. Gesell. Wissen. Göttingen Math.-Phys. Kl., (1918), 235–257 (in German); Transport Theory Stat. Phys., 1 (1971), 186–207 (in English).

    Google Scholar 

  39. D. Roytenberg and A. Weinstein, Courant algebroids and strongly homotopy Lie algebras, Lett. Math. Phys., 46-1 (1998), 81–93.

    Article  MathSciNet  Google Scholar 

  40. P. Schaller and T. Strobl, Poisson structure induced (topological) field theories, Mod. Phys. Lett. A, 9 (1994), 3129–3136.

    Article  MATH  MathSciNet  Google Scholar 

  41. J. D. Stasheff, The intrinsic bracket on the deformation complex of an associative algebra, J. Pure Appl. Algebra, 89 (1993) (festschrift in honor of Alex Heller), 231–235.

    Article  MATH  MathSciNet  Google Scholar 

  42. R. Stora, Continuum gauge theories, in M. Levy and P. Mitter, eds., New Developments in Quantum Field Theory, Plenum, New York, 1977, 201–224.

    Google Scholar 

  43. J. Tate, Homology of Noetherian rings and local rings, Illinois J. Math., 1 (1957), 14–27.

    MATH  MathSciNet  Google Scholar 

  44. X. Tang and A. Weinstein, Quantization and morita equivalence for constant dirac structures on tori, Ann. Inst. Fourier, 54 (2004), to appear; math.QA/0305413.

    Google Scholar 

  45. I. V. Tyutin, Gauge invariance in field theory and statistical physics in operator formulation, technical report, Lebedev Physics Institute, Moscow, 1975 (in Russian).

    Google Scholar 

  46. A. Weinstein, The Geometry of Momentum, 2002, math.SG/0208108.

    Google Scholar 

  47. J. Zinn-Justin, Renormalization of gauge theories, in H. Rollnick and K. Dietz, eds., Trends in Elementary Particle Theory, Lecture Notes in Physics, Vol. 37, Springer-Verlag, 1975, 2–39.

    Google Scholar 

  48. J. Zinn-Justin and R. Balian, eds., Méthodes en théorie des champs = Methods in Field Theory, North-Holland, Amsterdam, 1976 (École d’Été de Physique Théorique, Session XXVIII, tenue à Les Houches, 28 Juillet–6 Septembre, 1975).

    Google Scholar 

  49. B. Zwiebach, Closed string field theory: Quantum action and the Batalin-Vilkovisky master equation, Nuclear Phys. B, 390 (1993), 33–152.

    Article  MathSciNet  Google Scholar 

  50. B. Zwiebach, Oriented open-closed string theory revisited, Ann. Phys., 267 (1998), 193–248.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Alan Weinstein on his 60th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Boston

About this chapter

Cite this chapter

Stasheff, J. (2005). Poisson homotopy algebra: An idiosyncratic survey of homotopy algebraic topics related to Alan’s interests. In: Marsden, J.E., Ratiu, T.S. (eds) The Breadth of Symplectic and Poisson Geometry. Progress in Mathematics, vol 232. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4419-9_20

Download citation

Publish with us

Policies and ethics