Skip to main content

From momentum maps and dual pairs to symplectic and Poisson groupoids

  • Chapter
The Breadth of Symplectic and Poisson Geometry

Part of the book series: Progress in Mathematics ((PM,volume 232))

  • 1537 Accesses

Abstract

In this survey, we will try to indicate some important ideas, due in large part to Alan Weinstein, which led from the study of momentum maps and dual pairs to the current interest in symplectic and Poisson groupoids. We hope that it will be useful for readers new to the subject; therefore, we begin by recalling the definitions and properties which will be used in what follows. More details can be found in [4], [26], [47].

It is a great pleasure to submit a contribution for this volume in honour of Alan Weinstein. He is one of the four or five persons whose works have had the greatest influence on my own scientific interests, and I am glad to have this opportunity to express to him my admiration and my thanks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Albert and P. Dazord, Théorie des groupoïdes symplectiques: Chapitre II: Groupoïdes symplectiques, Publ. Dépt. Math. Univ. Claude Bernard Lyon I (N.S.), (1990), 27–99.

    Google Scholar 

  2. M. Bangoura and Y. Kosmann-Schwarzbach, Équation de Yang-Baxter dynamique classique et algébroïde de Lie, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 541–546.

    MATH  MathSciNet  Google Scholar 

  3. S. Bates and A. Weinstein, Lectures on the Geometry of Quantization, Berkeley Mathematics Lecture Notes, Vol. 8, American Mathematical Society, Providence, RI, 1997.

    MATH  Google Scholar 

  4. A. Cannas da Silva and A. Weinstein, Geometric Models for Noncommutative Algebras, Berkeley Mathematics Lecture Notes, Vol. 10, American Mathematical Society, Providence, RI, 1999.

    MATH  Google Scholar 

  5. A. S. Cattaneo and G. Felder, Poisson sigma models and symplectic groupoids, in Quantization of Singular Symplectic Quotients, Progress in Mathematics, Vol. 198, Birkhäuser, Boston, 2001, 41–73.

    Google Scholar 

  6. A. Coste, P. Dazord, and A. Weinstein, Groupoïdes symplectiques, Publ. Dépt. Math. Univ. Claude Bernard Lyon I (N.S.), 2/A (1987), 1–64.

    MathSciNet  Google Scholar 

  7. M. Crainic and R. L. Fernandes, Integrability of Lie brackets, Ann. Math., 157 (2003), 575–620.

    MATH  MathSciNet  Google Scholar 

  8. M. Crainic and R. L. Fernandes, Integrability of Poisson brackets, J. Differential Geom., 66-1, 71–137. November 2001.

    MathSciNet  Google Scholar 

  9. P. Dazord, Groupoïdes symplectiques et troisième théorème de Lie “non linéaire,”’ in C. Albert, ed., Géombetrie Symplectique et Mécanique: Colloque International, La Grande Motte, France, 23–28 Mai, 1988, Lecture Notes in Mathematics, Vol. 1416, Springer-Verlag, Berlin, New York, Heidelberg, 1990, 39–74.

    Google Scholar 

  10. P. Dazord and G. Hector, Intégration symplectique des variétés de Poisson totalement asphériques, in P. Dazord and A. Weinstein eds., Symplectic Geometry, Groupoids, and Integrable Systems, Mathematical Sciences Research Institute Publications, Vol. 20, Springer-Verlag, New York, 1991, 37–72.

    Google Scholar 

  11. P. Dazord and D. Sondaz, Variétés de Poisson, Algébroïdes de Lie, Publ. Dépt. Math. Univ. Claude Bernard Lyon I (N.S.), 1/B (1988), 1–68.

    MathSciNet  Google Scholar 

  12. A. Douady and M. Lazard, Espaces fibrés en algèbres de Lie et en groupes, Invent. Math., 1 (1966), 133–151.

    Article  MATH  MathSciNet  Google Scholar 

  13. V. G. Drinfel’d, Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equation, Soviet Math. Dokl., 27 (1983), 68–71.

    MathSciNet  Google Scholar 

  14. B. Fuchssteiner, The Lie algebra structure of degenerate Hamiltonian and bi-Hamiltonian systems, Progr. Theoret. Phys., 68 (1982), 1082–1104.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Huebschmann, Poisson cohomology and quantization, J. Reine Angew. Math., 408 (1990), 57–113.

    MATH  MathSciNet  Google Scholar 

  16. D. Iglesias Ponte, Lie Groups and Groupoids and Jacobi Structures, Thesis memory, Department of Fundamental Mathematics, Section of Geometry and Topology, Universidad de la Laguna, Spain, 2003.

    Google Scholar 

  17. D. Iglesias and J. C. Marrero, Generalized Lie bialgebroids and Jacobi structures, J. Geom. Phys., 40 (2001), 176–199.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Karasev, Analogues of the objects of Lie group theory for nonlinear Poisson brackets, Math. USSR Izvest., 28 (1987), 497–527.

    Article  MATH  Google Scholar 

  19. A. Kirillov, Local Lie algebras, Russian Math. Surveys, 31 (1976), 55–75.

    Article  MATH  MathSciNet  Google Scholar 

  20. Y. Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Appl. Math., 41 (1995), 153–165.

    Article  MATH  MathSciNet  Google Scholar 

  21. B. Kostant, Quantization and unitary representations, in Lectures in Modern Analysis and Applications III, Lecture Notes in Mathematics, Vol. 170, Springer-Verlag, Berlin, 1970, 87–207.

    Chapter  Google Scholar 

  22. J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, Astérisque, hors série (1985), 257–271.

    Google Scholar 

  23. P. Libermann, Problèmes d’équivalence et géométrie symplectique, Astérisque, 107–108 (1983) (IIIe rencontre de géométrie du Schnepfenried, 10–15 Mai 1982, Vol. I), 43–68.

    Google Scholar 

  24. P. Libermann, On symplectic and contact groupoids, in O. Kowalski and D. Krupka, eds., Differential Geometry and Its Applications: Proceedings of the 5th International Conference, Opava, August 24–28, 1992, Silesian University, Opava, Czech Republic, 1993, 29–45.

    Google Scholar 

  25. P. Libermann, Lie algebroids and mechanics, Arch. Math., 32 (1996), 1147–162.

    MathSciNet  Google Scholar 

  26. P. Libermann and Ch.-M. Marle, Symplectic Geometry and Analytical Mechanics, Kluwer, Dordrecht, the Netherlands, 1987.

    MATH  Google Scholar 

  27. A. Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geom., 12 (1977), 253–300.

    MATH  MathSciNet  Google Scholar 

  28. A. Lichnerowicz, Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. Pures Appl., 57 (1978), 453–488.

    MATH  MathSciNet  Google Scholar 

  29. Z.-J. Liu and P. Xu, Exact Lie algebroids and Poisson groupoids, Geom. Functional Anal., 6-1 (1996), 138–145.

    Article  MathSciNet  Google Scholar 

  30. J.-H. Lu, Momentum mappings and reduction of Poisson actions, in P. Dazord and A. Weinstein, eds., Symplectic Geometry, Groupoids, and Integrable Systems, Mathematical Sciences Research Institute Publications, Vol. 20, Springer-Verlag, New York, 1991, 209–226.

    Google Scholar 

  31. J.-H. Lu and A. Weinstein, Groupoïdes symplectiques doubles des groupes de Lie-Poisson, C. R. Acad. Sci. Paris Sér. I Math., 309 (1989), 951–954.

    MATH  MathSciNet  Google Scholar 

  32. J.-H. Lu and A. Weinstein, Poisson Lie groups, Dressing transformations and Bruhat decomposition, J. Differential Geom., 31 (1990), 501–526.

    MATH  MathSciNet  Google Scholar 

  33. K. C. H. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, London Mathmatical Society Lecture Notes, Vol. 124, Cambridge University Press, Cambridge, UK, 1987.

    MATH  Google Scholar 

  34. K. C. H. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J., 73 (1994), 415–452.

    Article  MATH  MathSciNet  Google Scholar 

  35. K. C. H. Mackenzie and P. Xu, Integration of Lie bialgebroids, Topology, 39 (2000), 445–467.

    Article  MATH  MathSciNet  Google Scholar 

  36. F. Magri and C. Morosi, A Geometrical Characterization of Integrable Hamiltonian Systems through the Theory of Poisson-Nijenhuis Manifolds, Quaderno S 19, University of Milan, Milan, 1984.

    Google Scholar 

  37. C.-M. Marle, Differential calculus on a Lie algebroid and Poisson manifolds, in The J. A. Pereira da Silva Birthday Schrift, Textos de Matemática 32, Departamento de Matematica, Universidade de Coimbra, Coimbra, Portugal, 2002, 83–149.

    Google Scholar 

  38. K. Mikami and A. Weinstein, Moments and reduction for symplectic groupoid actions, Publ. RIMS Kyoto Univ., 24 (1988), 121–140.

    MATH  MathSciNet  Google Scholar 

  39. I. Moerdijk and J. Mrčun, On integrability of infinitesimal actions, Amer. J. Math., 124 (2002), 567–593.

    Article  MATH  MathSciNet  Google Scholar 

  40. A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor fields, Indag. Math., 17 (1955), 390–403.

    MathSciNet  Google Scholar 

  41. J. Pradines, Théorie de Lie pour les groupoïdes différentiables: Calcul différentiel dans la catégorie des groupoïdes infinitésimaux, C. R. Acad. Sci. Paris Sér. A, 264 (1967), 245–248.

    MATH  MathSciNet  Google Scholar 

  42. J. Pradines, Troisième théorème de Lie pour les groupoïdes différentiables, C. R. Acad. Sci. Paris Sér. A, 267 (1968), 21–23.

    MATH  MathSciNet  Google Scholar 

  43. J. Renault, A Groupoid Approach to C*-Algebras, Lecture Notes in Mathematics, Vol. 793, Springer-Verlag, Berlin, New York, Heidelberg, 1980.

    MATH  Google Scholar 

  44. J. A. Schouten, On the differential operators of first order in tensor calculus, in Convengo di Geometria Differenziale, Cremonese, Roma, 1953, 1–7.

    Google Scholar 

  45. J.-M. Souriau, Structure des Systèmes Dynamiques, Dunod, Paris, 1970.

    MATH  Google Scholar 

  46. W. M. Tulczyjew, Geometric Formulation of Physical Theories, Bibliopolis, Napoli, 1989.

    Google Scholar 

  47. I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Birkhäuser, Basel, Boston, Berlin, 1994.

    MATH  Google Scholar 

  48. A. Weinstein, The local structure of Poisson manifolds, J. Differential Geom., 18 (1983), 523–557.

    MATH  MathSciNet  Google Scholar 

  49. A. Weinstein, Symplectic groupoids and Poisson manifolds, Bull. Amer. Math. Soc., 16 (1987), 101–103.

    Article  MATH  MathSciNet  Google Scholar 

  50. A. Weinstein, Some remarks on dressing transformations, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 35 (1988), 163–167.

    MATH  MathSciNet  Google Scholar 

  51. A. Weinstein, Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan, 40 (1988), 705–727.

    Article  MATH  MathSciNet  Google Scholar 

  52. A. Weinstein, Groupoids: Unifying internal and external symmetry: A tour through some examples, Not. Amer. Math. Soc., 43 (1996), 744–752.

    MATH  MathSciNet  Google Scholar 

  53. A. Weinstein, Poisson geometry, Differential Geom. Appl., 9 (1998), 213–238.

    Article  MathSciNet  Google Scholar 

  54. A. Weinstein, The Geometry of Momentum, 2002, arXiv: math.SG/0208108 v1.

    Google Scholar 

  55. P. Xu, Morita equivalence of Poisson manifolds, Comm. Math. Phys., 142 (1991), 493–509.

    Article  MATH  MathSciNet  Google Scholar 

  56. P. Xu, Poisson cohomology of regular Poisson manifolds, Ann. Inst. Fourier Grenoble, 42-4 (1992), 967–988.

    Google Scholar 

  57. P. Xu, On Poisson groupoids, Internat. J. Math., 6-1 (1995), 101–124.

    Article  Google Scholar 

  58. S. Zakrzewski, Quantum and classical pseudogroups I, II, Comm. Math. Phys., 134 (1990), 347–370, 371–395.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Boston

About this chapter

Cite this chapter

Marle, CM. (2005). From momentum maps and dual pairs to symplectic and Poisson groupoids. In: Marsden, J.E., Ratiu, T.S. (eds) The Breadth of Symplectic and Poisson Geometry. Progress in Mathematics, vol 232. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4419-9_17

Download citation

Publish with us

Policies and ethics