Skip to main content

Mahler measure for dynamical systems on ℙ1 and intersection theory on a singular arithmetic surface

  • Chapter
Geometric Methods in Algebra and Number Theory

Part of the book series: Progress in Mathematics ((PM,volume 235))

Summary

The Mahler measure formula expresses the height of an algebraic number as the integral of the log of the absolute value of its minimal polynomial on the unit circle. The height is in fact the canonical height associated to the monomial maps xn. We show in this work that for any rational map ϕ(x) the canonical height of an algebraic number with respect to ϕ can be expressed as the integral of the log of its equation against the invariant Brolin-Lyubich measure associated to ϕ, with additional adelic terms at finite places of bad reduction. We give a complete proof of this theorem using integral models for each iterate of ϕ. In the last chapter on equidistribution and Julia sets we give a survey of results obtained by P. Autissier, M. Baker, R. Rumely and ourselves. In particular our results, when combined with techniques of diophantine approximation, will allow us to compute the integrals in the generalized Mahler formula by averaging on periodic points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Arakelov —Intersection theory of divisors on an arithmetic surface”, Math. USSR Izvestija8 (1974), p. 1167–1180.

    Article  MATH  Google Scholar 

  2. P. Autissier —Points entiers sur les surfaces arithmétiques”, J. Reine. Angew. Math.531 (2001), p. 201–235.

    MATH  MathSciNet  Google Scholar 

  3. M. Baker and R. Rumely —Équidistribution of small points on curves, rational dynamics, and potential theory”, Preprint.

    Google Scholar 

  4. A. F. BeardonIteration of rational functions, Springer-Verlag, New York, 1991.

    Google Scholar 

  5. E. Brieskorn and H. KnörrerPlane algebraic curves, Birkhäuser, Basel, 1986.

    Google Scholar 

  6. H. Brolin —Invariant sets under iteration of rational functions”, Ark. Mat.6 (1965), p. 103–144.

    MATH  MathSciNet  Google Scholar 

  7. G. S. Call and S. Goldstine —Canonical heights on projective space”, J. Number Theory63 (1997), p. 211–243.

    Article  MathSciNet  Google Scholar 

  8. G. S. Call and J. Silverman —Canonical heights on varieties with morphism”, Compositio Math.89 (1993), p. 163–205.

    MathSciNet  Google Scholar 

  9. P. Deligne —Le déterminant de la cohomologie”, Contemporary Mathematics67 (1987), p. 94–177.

    Google Scholar 

  10. G. Everest and T. WardHeights of Polynomials and Entropy in Algebraic Dynamics, Springer-Verlag, New York, 1999.

    Google Scholar 

  11. A. Freire, A. Lopes and R. Mañe —An invariant measure for rational functions”, Boletim da Sociedade Brasileira de Matematica14 (1983), p. 45–62.

    MathSciNet  Google Scholar 

  12. W. FultonIntersection theory, Springer-Verlag, New York, 1975.

    Google Scholar 

  13. R. HartshorneAlgebraic geometry, Springer-Verlag, New York, 1977.

    Google Scholar 

  14. S. LangIntroduction to Arakelov theory, Springer-Verlag, New York, 1988.

    Google Scholar 

  15. —, Algebra, third ed., Springer-Verlag, New York, 2002.

    Google Scholar 

  16. M. Lyubich —Entropy properties of rational endomorphisms of the Riemann sphere”, Ergodic Theory Dynam. Systems3 (1983), p. 351–385.

    MATH  MathSciNet  Google Scholar 

  17. K. Mahler —An application of Jensen’s formula to polynomials”, Mathematica7 (1960), p. 98–100.

    MATH  MathSciNet  Google Scholar 

  18. V. Maillot —Géométrie d’Arakelov des Variétés Toriques et fibrés en droites intégrables”, Mémoires de la S.M.F80 (2000).

    Google Scholar 

  19. C. T. McMullenComplex dynamics and renormalization, Annals of Mathematics Studies Volume 135, Princeton, 1994.

    Google Scholar 

  20. J. MilnorDynamics in one complex variable, Vieweg, Braunschweig, 1999.

    Google Scholar 

  21. L. Moret-Bailly —Pinceaux de variété abéliennes”, Asterisque129 (1985).

    Google Scholar 

  22. D. Mumford —The topology of normal singularities of an algebraic surface and a criterion for simplicity”, Inst. Hautes Études Sci. Publ. Math.9 (1961), p. 5–22.

    MATH  MathSciNet  Google Scholar 

  23. C. Peskine and L. Szpiro —Syzygies et multiplicités”, C. R. Acad. Paris Sci. Sér A278 (1974), p. 1421–1424.

    MathSciNet  Google Scholar 

  24. J. Silverman —The theory of height functions”, Arithmetic geometry (G. Cornell and J. Silverman, eds.), Springer-Verlag, New York, 1986, p. 151–166.

    Google Scholar 

  25. L. Szpiro —Cours de géométrie arithmétique”, Orsay preprint.

    Google Scholar 

  26. —,Séminaire sur les pinceaux arithmétiques”, Astérisque 127 (1985), p. 1–287.

    Google Scholar 

  27. L. Szpiro and T. Tucker —Computing generalized Mahler measure via equidistribution”, in preparation.

    Google Scholar 

  28. L. Szpiro, E. Ullmo and S. Zhang —Équirépartition des petits points”, Invent. Math.127 (1997), p. 337–347.

    Article  MathSciNet  Google Scholar 

  29. P. Vojta —A generalization of theorems of Faltings and Thue-Siegel-Roth-Wirsing”, J. Amer. Math. Soc.5 (1992), p. 763–804.

    Article  MATH  MathSciNet  Google Scholar 

  30. S. Zhang —Positive line bundles on arithmetic surfaces”, Annals of Math136 (1992), p. 569–587.

    Article  MATH  Google Scholar 

  31. —,Positive line bundles on arithmetic varieties”, J. Amer. Math. Soc. 8 (1995), p. 187–221.

    Article  MATH  MathSciNet  Google Scholar 

  32. —,Small points and adelic metrics”, J. Algebraic Geometry 4 (1995), p. 281–300.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Boston

About this chapter

Cite this chapter

Pineiro, J., Szpiro, L., Tucker, T.J. (2005). Mahler measure for dynamical systems on ℙ1 and intersection theory on a singular arithmetic surface. In: Bogomolov, F., Tschinkel, Y. (eds) Geometric Methods in Algebra and Number Theory. Progress in Mathematics, vol 235. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4417-2_10

Download citation

Publish with us

Policies and ethics