Skip to main content

Identification of the Target Protein

  • Chapter
Protein Analysis and Purification
  • 2767 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitken A (1990): Identification of Protein Consensus Sequences. Chichester, UK: Ellis Horwood

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990): Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  • Bairoch A (1997): Proteome databases. In: Proteome Research: New Frontiers in Functional Genomics, Wilkins MR, Williams KL, Appel RD, Hochstrasser DF, eds. Berlin: Springer-Verlag

    Google Scholar 

  • Bairoch A, Apweiler R (1997): The SWISS-PROT protein sequence data bank and its supplement TrEMBL. Nucleic Acids Res 25:31–36

    Article  PubMed  CAS  Google Scholar 

  • Bairoch A, Bucher P, Hofmann K (1997): The PROSITE database, its status in 1997. Nucleic Acids Res 25:217–221

    Article  PubMed  CAS  Google Scholar 

  • Barrett AJ et al ed. (1998): Handbook of Proteolytic Enzymes CD-ROM. San Diego, CA: Academic Press

    Google Scholar 

  • Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonhammer EL (2000): The Pfam protein families database. Nucleic Acids Res 30:276–280

    Article  Google Scholar 

  • Beavis RC, Fenyo D (2000): In: Proteomics: A Trends Guide, Mann M, Blackenstock W, eds. London: Elsevier, pp. 12–17

    Google Scholar 

  • Bergman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000): The protein data bank. Nucleic Acids Rec 28:235–242

    Article  Google Scholar 

  • Bergman T (2000): Ladder sequencing. Experientia Supplementa 88:133–144

    CAS  Google Scholar 

  • Berndt P, Hobohm U, Langen H (1999): Reliable automatic protein identification from matrix-assisted laser desorption/ionization mass spectrometric peptide fingerprints. Electrophoresis 20:3521–3526

    Article  PubMed  CAS  Google Scholar 

  • Boyle WJ, Van der Geer P, Hunter T (1991): Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol 201:110–111

    PubMed  CAS  Google Scholar 

  • Cedano J, Aloy P, Perez-Pons JA, Querol E (1997): Relation between amino acid composition and cellular location of proteins. J Mol Biol 266:594–600

    Article  PubMed  CAS  Google Scholar 

  • Celis JE, Rasmussen HH, Leffers H, Madsen P, Honore B, Gesser B, Dejgaard K, Vandekerckhove J (1991): Human cellular protein patterns and their link to genome DNA sequence data: Usefulness of two-dimensional gel electrophoresis and microsequencing. FASEB J 5:2200–2208

    PubMed  CAS  Google Scholar 

  • Choli T, Kapp U, Wittmann-Liebold B (1989): Blotting of proteins onto immobilon membranes: In situ characterization and comparison with high performance liquid chromatography. J Chromatogr 476:59–72

    Article  PubMed  CAS  Google Scholar 

  • Cleveland DW, Fischer SG, Kirschner MW, Laemmli UK (1977): Peptide mapping by limited proteolysis in SDS by gel electrophoresis. J Biol Chem 252:1102–1106

    PubMed  CAS  Google Scholar 

  • Cohen SL, Chait BT (1997): Mass spectrometry of whole proteins eluted from SDS-PAGE gels. Anal Biochem 247:257–267

    Article  PubMed  CAS  Google Scholar 

  • Cottrell JS, Sutton CW (1996): The identification of electrophoretically separated proteins by peptide mass fingerprinting. In: Methods in Molecular Biology Vol. 61: Protein and Peptide Analysis by Mass Spectrometry, Chapman JR, ed. Totowa, NJ: Humana Press Inc.

    Google Scholar 

  • Courchesne PL, Patterson SD (1999): Identification of proteins by matrix-assisted laser desorption/ionization mass spectrometry using peptide and fragment ion masses. Methods Mol Biol 112:487–511

    PubMed  CAS  Google Scholar 

  • Creasy DM, Cottrell, JS (2002): Error tolerant searching of uninterpreted tandem mass spectrometry data. Proteomics 2:1426–1434

    Article  PubMed  CAS  Google Scholar 

  • Crimmins DL, McCourt DW, Thoma TS, Scott MG, Macke K, Schwartz BD (1990): In situ chemical cleavage of proteins immobilized to glass-fiber and polyvinylidenedifluoride membranes: Cleavage at tryptophan residues with 2-(2′-nitrophenylsulfenyl)-3-methyl-3′-bromoindolenine to obtain internal amino acid sequence. Anal Biochem 187:27–38

    Article  PubMed  CAS  Google Scholar 

  • Dayhoff MO, Eck RV (1966): Atlas of Protein Sequence and Structure. Silver Spring, MD: National Biomedical Research Foundation

    Google Scholar 

  • Degani Y, Patchornik A (1971): Selective cyanylation of sulfhydryl groups. II. On the synthesis of 2-Nitro-5-thiocyanatobenzoic acid. J Org Chem 36:2727

    Article  Google Scholar 

  • Deshpande KL, Fried VA, Ando M, Webster G (1987): Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence. Proc Natl Acad Sci USA 84:36–40

    Article  PubMed  CAS  Google Scholar 

  • Doolittle RF, Hunkapiller MW, Hood LE, Devare SG, Robbins KC, Aaronson SA, Antoniades HN (1983): Simian sarcoma virus oncgene, r-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science 221:275–276

    Article  PubMed  CAS  Google Scholar 

  • Downs F, Peterson C, Murty VLN, Pigman W (1977): Quantitation of the beta-elimination reaction as used on glycoproteins. Int J Peptide Protein Res 10:315–322

    Article  CAS  Google Scholar 

  • Edman P, Begg G (1967): A protein sequenator. Eur J Biochem 1:80–91

    Article  PubMed  CAS  Google Scholar 

  • Eng J, McCormack AL, Yates JR III (1994): J Am Soc Mass Spectrom 5:976–989

    Article  CAS  Google Scholar 

  • Evans RW, Aitken A, Patel KJ (1988): Evidence for a single glycan moiety in rabbit serum transferrin and location of the glycan within the polypeptide chain. FEBS Lett 238:39–42

    Article  PubMed  CAS  Google Scholar 

  • Fenyö D (2000): Identifying the proteome: software tools. Curr Opin Biotechnol 11:391–395

    Article  PubMed  Google Scholar 

  • Fenyö D, Qin J, Chait BT (1998): Protein identification using mass spectrometric information. Electrophoresis 19:998–1005

    Article  PubMed  Google Scholar 

  • Fernandez J, DeMott M, Atherton D, Mische SM (1992): Internal protein sequence analysis: enzymatic digestion for less than 10 micrograms of protein bound to polyvinylidene difluoride or nitrocellulose membranes. Anal Biochem 201:255–264

    Article  PubMed  CAS  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999): Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  PubMed  CAS  Google Scholar 

  • Hearn MTW, Aguilar MI (1988): Reversed phase high performance liquid chromatography of peptides and proteins. In: Modern Physical Methods in Biochemistry, Neuberger A, Van Deenen LLM, eds. Amsterdam: Elsevier

    Google Scholar 

  • Henikoff JG, Greene EA, Pietrokovski S, Henikoff S (2000): Increased coverage of protein families with the blocks database servers. Nucleic Acids Res 28:228–230

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser DF, Patchornik A, Merril CR (1988): Development of polyacrylamide gels that improve the separation of proteins and their detection by silver staining. Anal Biochem 173:412–423

    Article  PubMed  CAS  Google Scholar 

  • Hulmes JD, Miedel MC, Pan Y CE (1989): Strategies for microcharacterization of proteins using direct chemistry on sequencer supports. In: Techniques in Protein Chemistry, Hugh TE, ed. San Diego: Academic Press

    Google Scholar 

  • Ibba M (2002): Biochemistry and bioinformatics: when worlds collide. Trends Biochem Sci 27:64

    Article  CAS  Google Scholar 

  • James P, Quadroni M, Carafoli E, Gonnet G (1994): Protein identification in DNA databases by peptide mass fingerprinting. Protein Sci 3: 1347–1350

    PubMed  CAS  Google Scholar 

  • Jeno P, Mini T, Moes S, Hintermann E, Horst M (1995): Internal sequences from proteins digested in polyacrylamide gels. Anal Biochem 224:75–82

    Article  PubMed  CAS  Google Scholar 

  • Inglis AS (1983): Cleavage at aspartic acid. Methods Enzymol 91:324–332

    Article  PubMed  CAS  Google Scholar 

  • Keil B, Tong NT (1988): Database lysis: computer-assisted investigation of cleavage sites in proteins. In: Methods in Protein Sequence Analysis, Wittman-Liebold B, ed. Heidelberg: Springer-Verlag

    Google Scholar 

  • Kilic F, Ball EH (1991): Partial cleavage mapping of the cytoskeletal protein vinculin. J Biol Chem 266:8734–8740

    PubMed  CAS  Google Scholar 

  • Kostka V, Carpenter FH (1964): Inhibition of chymotrypsin activity in crystalline trypsin preparations. J Biol Chem 239:1799–1803

    PubMed  CAS  Google Scholar 

  • Lin J-H, Wu X-R, Kreibich G, Sun T-T (1994): Precursor sequence, processing and urothelium-specific expression of a major 15-kDa protein subunit of asymmetric unit membrane. J Biol Chem 269:1775–1784

    PubMed  CAS  Google Scholar 

  • Lipman DJ, Pearson WR (1985): Rapid and sensitive protein similarity searches. Science 227:1435–1441

    Article  PubMed  CAS  Google Scholar 

  • Lischwe MA, Sung MA (1977): Use of N-chlorosuccinimide/urea for the selective cleavage of tryptophanyl peptide bonds in proteins. J Biol Chem 252:4976–4980

    PubMed  CAS  Google Scholar 

  • Loo RR, Dales N, Andrews PC (1994): Surfactant effects on protein structure examined by electrospray ionization mass spectrometry. Protein Sci 3:1975–1983

    Article  PubMed  CAS  Google Scholar 

  • Lui M, Tempst P, Erdjument-Bromage H (1996): Methodical analysis of protein-nitrocellulose interactions to design a refined digestion protocol. Anal Biochem 241:156–166

    Article  PubMed  CAS  Google Scholar 

  • Mann M, Hendrickson RC, Pandey A (2001): Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70:437–473

    Article  PubMed  CAS  Google Scholar 

  • Mann M, Hojrup P, Roepstoff P (1993): Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol Mass Spectrom 22:338–345

    Article  PubMed  CAS  Google Scholar 

  • Mann M, Jensen ON (2003): Proteomic analysis of post-translational modifications. Nature Biotechnol 21:255–261

    Article  CAS  Google Scholar 

  • Mann M, Ong S-E, Gronborg M, Steen H, Jensen ON, Pandey A (2002): Analysis of protein phosphorylation using mass spectreometry: deciphering the phosphoproteome. TRENDS Biotechnol 20:261–268

    Article  PubMed  CAS  Google Scholar 

  • Mann M, Pandey A (2001): Use of mass spectrometry-derived data to annotate nucleotide and protein sequence databases. TRENDS Bio Sci 26:54–61

    Article  CAS  Google Scholar 

  • Mann M, Wilm M (1994): Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem 66:4390–4399

    Article  PubMed  CAS  Google Scholar 

  • Martz E (2002): Protein Explorer: easy yet powerful macromolecular visualization. TRENDS Bio Sci 27:107–109

    Article  CAS  Google Scholar 

  • Miczka G, Kula MR (1989): The use of polyvinylidene difluoride membranes as blotting matrix in combination with sequencing; applications to pyruvate decarboxylase from Zymomonas mobilis. Anal Lett 22:2771–2782

    CAS  Google Scholar 

  • Morris HR, Paxton T, Dell A, Langhorne J, Bordoli RS, Hoyes J, Bateman RH (1996): High sensitivity collisionally activated decomposition tandem mass spectrometry on a novel quadrapole/orthogonal-acceleration Time-of-Flight mass spectrometer. Rapid Commun Mass Spectrom 10:889–896

    Article  PubMed  CAS  Google Scholar 

  • Moore S, Stein WH (1963): Chromatographic determination of amino acids by the use of automatic recording equipment. Methods Enzymol 6:819–831

    CAS  Google Scholar 

  • Moos M, Nguyen NY, Liu T-Y (1988): Reproducible, high yield sequencing of proteins electrophoretically separated and transferred to an inert support. J Biol Chem 263:6005–6008

    PubMed  CAS  Google Scholar 

  • Nadler T, Parker K, Huang Y, Degnore J, Wolf B, Anderson L, Anderson N, Lennon J, Bappanad D, McGrath A (2000): Automation of gel slice extraction and MALDI-TOF-MS sample preparation on a robotic platform. in: Proceedings of the 48th ASMS Conference on Mass Spectrometry and Allied Topics. Long Beach, CA, pp. 345–346

    Google Scholar 

  • Nefsky B, Bretscher A (1989): Landmark mapping: a general method for localizing cysteine residues within a protein. Proc Natl Acad Sci USA 86:3549–3553

    Article  PubMed  CAS  Google Scholar 

  • Pandey A, Mann M (2000): Proteomics to study genes and genomes. Nature 405:837–846

    Article  PubMed  CAS  Google Scholar 

  • Pappin DJC, Hojrup P, Bleasby AJ (1993): Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol 3:327–332

    Article  PubMed  CAS  Google Scholar 

  • Park Z-Y, Russell DH (2000): Thermal denaturation: a useful technique in peptide mass mapping. Anal Chem 72:2667–2670

    Article  PubMed  CAS  Google Scholar 

  • Park Z-Y, Russell DH (2001): Identification of individual proteins in complex protein mixtures by high-resolution, high-mass-accuracy MALDI TOF-mass spectrometry analysis of in-solution thermal denaturation/enzymatic digestion. Anal Chem 73:2558–2564

    Article  PubMed  CAS  Google Scholar 

  • Patterson SD, Aebersold R (1995): Mass spectrometric approaches for the identification of gel-separated proteins. Electrophoesis 16:1791–1814

    Article  CAS  Google Scholar 

  • Perkins DN, Pappin DJ, Creasey DM, Cottrell (1999): Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  PubMed  CAS  Google Scholar 

  • Rappsilber J, Mann M (2002): What does it mean to identify a protein in proteomics? TRENDS Biochem Sci 27:74–78

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen HH, Van Damme J, Bauw G, Puype M, Gesser B, Celis JE, Vandekerckhove J (1991): Protein electroblotting and microsequencing in establishing integrated human protein databases. In: Methods in Protein Sequence Analysis, Jörnvall H, Höög JO, eds. Basel: Birkhäuser Verlag

    Google Scholar 

  • Saris CJM, van Eenbergen J, Jenks BG, Bloemers HPJ (1983): Hydroxylamine cleavage of proteins in polyacrylamide gels. Anal Biochem 132:54–67

    Article  PubMed  CAS  Google Scholar 

  • Scott MG, Crimmins DL, McCourt DW, Tarrand JJ, Eyerman MC, Nahm, MH (1988): A simple in situ cyanogen bromide cleavage method to obtain internal amino acid sequence of proteins electroblotted to polyvinyldifluoride membranes. Biochem Biophys Res Commun 155:1353–1359

    Article  PubMed  CAS  Google Scholar 

  • Shevchenko A, Loboda A, Shevchenko A, Ens W, Standing KG (2000): MALDI quadrupole time-of-flight mass spectrometry: a powerful tool for proteomic research. Anal Chem 72:2132–2141

    Article  PubMed  CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996): Anal Chem 68:850–858

    Article  PubMed  CAS  Google Scholar 

  • Shultz J et al (2002): SMART: A web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28:231–234

    Article  Google Scholar 

  • Spahr CS, Susin SA, Bures EJ, Robinson JH, Davis MT, McGinley MD, Kroemer G, Patterson SD (2000): Simplification of complex peptide mixtures for proteomic analysis: reversible biotinylation of cysteinyl peptides. Electrophoresis 21:1635–1650

    Article  PubMed  CAS  Google Scholar 

  • Spengler B (2001): The basics of Matrix-assisted laser desorption, ionization time-of-flight mass spectrometry and post-source decay analysis. In: Proteome Research: Mass Spectrometry Principles and Practice, James P, ed. Berlin: Springer-Verlag

    Google Scholar 

  • Stone KL, LoPresti MB, Crawford JM, DeAngelis R, Williams KR (1989): Reverse phase HPLC separation of sub-nanomole amounts of peptides obtained from enzymatic digests. In: HPLC of Peptides and Proteins: Separation, Analysis and Conformation, Hodges RS, ed. Boca Raton, FL: CRC Press

    Google Scholar 

  • Tabb DL, Eng JK, Yates JR III (2001): Protein identification by SEQUEST. In: Proteome Research: Mass Spectrometry, James P, ed. Berlin: Springer-Verlag

    Google Scholar 

  • Tabb DL, McDonald WH, Yates JR (2002): DTASelect and contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J Proteome Res 1:21–26

    Article  PubMed  CAS  Google Scholar 

  • Vanfleteren JR, Raymackers JG, Van Bun SM, Meheus LA (1992): Peptide mapping and microsequencing of proteins separated by SDS-PAGE after limited in situ acid hydrolysis. BioTechniques 12:551–557

    Google Scholar 

  • Van Montfort BA, Canas B, Duurkens R, Godavac-Zimmermann, Robillard GT (2002): Improved in-gel approaches to generate peptide maps of integral membrane proteins with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrometry 37:322–330

    Article  CAS  Google Scholar 

  • Valaskovic GA, Kelleher NL, McLafferty FW (1996): Attomole protein characterization by capillary electrophoresis-mass spectrometry. Science 273:1199–1202

    Article  PubMed  CAS  Google Scholar 

  • Vorburger K, Kitten GT, Nigg EA (1989): Modification of nuclear lamin proteins by a mevalonic acid derivative occurs in reticulocyte lysates and requires the cysteine residue of the C-terminal CXXM motif. EMBO J 8:4007–4013

    PubMed  CAS  Google Scholar 

  • Waterman MS, Vingron M (1994): Rapid and accurate estimates of statistical significance for sequence data base searches. Proc Natl Acad Sci USA 91:4625–4628

    Article  PubMed  CAS  Google Scholar 

  • Weber K, Osborn M (1975): Proteins and sodium dodecyl sulfate: Molecular weight determination on polyacrylamide gels and related procedures. In: The Proteins, Vol. I, Neurath H, Hill RL, eds. New York: Academic Press

    Google Scholar 

  • Wilbur WJ, Lipman DJ (1983): Rapid similarity searches of nucleic acid and protein data banks. Proc Natl Acad Sci USA 80:726–730

    Article  PubMed  CAS  Google Scholar 

  • Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez J-C, Yan JX, Gooley AA, Hughes G, Humphery-Smith I, Williams KL, Hochstrasser DF (1996): From proteins to proteomes: Large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology 14:61–65

    Article  PubMed  CAS  Google Scholar 

  • Wilkins MR, Gasteiger E, Bairoch A, Sanchez J-C, Williams KL, Appel RD, Hochstrasser DF (1998): Protein identification and analysis tools in the ExPASy server. In: 2-D Proteome Analysis Protocols, AJ Link, ed. New Jersey: Humana Press

    Google Scholar 

  • Wilkins MR, Gasteiger E, Bairoch A, Sanchez J-C, Williams KL, Appel, RD, Hochstrasser DF (1999): Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552

    PubMed  CAS  Google Scholar 

  • Wilm M, Mann M (1996): Analytical properties of the nanoelectrospray ion source. Anal Chem 68:1–8

    Article  PubMed  CAS  Google Scholar 

  • Wilson JF (2002): The rise of biological databases. The Scientist Mar 18 p. 34–35

    Google Scholar 

  • Zhang W, Chait BT (2000): ProFound-an expert system for protein identification using mass spectrometric peptide mapping information. Anal Chem 72:2482–24

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Boston

About this chapter

Cite this chapter

(2005). Identification of the Target Protein. In: Protein Analysis and Purification. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4412-1_8

Download citation

Publish with us

Policies and ethics