Skip to main content

Decentralized Resource Allocation Mechanisms in Networks: Realization and Implementation

  • Chapter
Advances in Control, Communication Networks, and Transportation Systems

Summary

We discuss how decentralized network resource allocation problems fit within the context of mechanism design (realization theory and implementation theory), and how mechanism design can provide useful insight into the nature of decentralized network resource allocation problems. The discussion is guided by the unicast problem with routing and Quality of Service (QoS) requirements, and the multi-rate multicast service provisioning problem in networks. For these problems we present decentralized resource allocation mechanisms that achieve the solution of the corresponding centralized resource allocation problem and are informationally efficient. We show how the aforementioned mechanisms can be embedded into the general framework of realization theory, and indicate how realization theory can be used to establish the mechanisms’ informational efficiency in certain instances. We also present a conjecture related to implementation in Nash equilibria of the optimal centralized solution of the unicast service provisioning problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Abreu and H. Matsushima, Virtual implementation in iteratively undominated strategies: Complete information, Econometrica, 60(5):993–1008, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. Abreu and A. Sen, Subgame perfect implementation: A necessary and almost sufficient condition, Journal of Economic Theory, 50:285–299, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Allais, A la Recherche d’une Discipline Economique, I, Paris, 1943.

    Google Scholar 

  4. M. Allais, Economie Pure et Rendement Social, Paris, 1945.

    Google Scholar 

  5. T. Apostol, Mathematical Analysis, Addison-Wesley, 1974.

    Google Scholar 

  6. K. Arrow, A difficulty in the concept of social welfare, Journal of Political Economy, 58:328–346, 1950.

    Article  Google Scholar 

  7. K. Arrow, An extension of the basic theorems of welfare economics, In J. Neyman, Ed., Proceedings of the Second Berkeley Symposium, 507–532, Berkeley, CA, 1951.

    Google Scholar 

  8. K. Arrow, Social Choice and Individual Values, Yale University Press, 1951.

    Google Scholar 

  9. K. Arrow and F. Hann, General Competitive Analysis, Holden-Day, San Francisco, 1971.

    Google Scholar 

  10. E. Barone, Il ministro della produzione nello stato collettivista, Giornale degli Economisti, 1908.

    Google Scholar 

  11. Y. Bartal, J. Byers and D. Raz, Global optimization using local information with applications to flow control, In Proceedings of the 38 th Ann. IEEE Symp. on Fundations of Computer Science (FOCS), Miami, FL, October 1997.

    Google Scholar 

  12. M. Bazaraa, H. Sherali and C. Shetty, Nonlinear Programming Theory and Algorithms, John Wiley, New York, 1993.

    MATH  Google Scholar 

  13. A. Bergson, A reformulation of certain aspects of welfare economics, Quarterly Journal of Economics, 52:310–334, 1938.

    Article  Google Scholar 

  14. D. Bertsekas and R. Gallagher, Data Networks, 2nd Edition, Prentice Hall, Englewood Cliffs, 1992.

    MATH  Google Scholar 

  15. N. Bukharin, Economics of the Transition Period, 1920.

    Google Scholar 

  16. N. Bukharin and E. Preobrazhensky, The ABC of Communism, Penguin Books, 1969.

    Google Scholar 

  17. R. Cocchi, D. Estrin, S. Shenker and L. Zhang, Pricing in computer networks: motivation, formulation and example, IEEE/ACM Transaction on Networking, 1(6):614–627, December 1993.

    Article  Google Scholar 

  18. L. Corchon, The Theory of Implementation of Socially Optimal Decisions in Economics, McMillan, New York, 1996.

    Google Scholar 

  19. C. Courcoubetis, F. Kelly and R. Weber, Measurement-based usage charges in communications networks, Operations Research, 48(4):535–548, 2000.

    Article  Google Scholar 

  20. P. Dasgupta, P. Hammond and E. Maskin, The implementation of social choice rules: Some general results on incentive compatibility, Review of Economic Studies, 46:185–216, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  21. T. de Scitovsky, A note on welfare propositions in economics, Review of Economic Studies, 9:77–88, 1941.

    Article  Google Scholar 

  22. G. de Veciana and R. Baldick, Resource allocation in multiservice networks via pricing, Computer Networks and ISDN Systems, 30:951–962, 1998.

    Article  Google Scholar 

  23. S. Deb and R. Srikant, Congestion control for fair resource allocation in networks with multicast flows, IEEE/ACM Transactions on Networking, 12(2):261–273, 2004.

    Article  Google Scholar 

  24. G. Debreu, Coefficient of resource utilization, Econometrica, 19:273–292, 1951.

    Article  MATH  Google Scholar 

  25. G. Debreu, Theory of Value, John Wiley, New York, 1959.

    MATH  Google Scholar 

  26. H. Dickinson, Price formation in a socialist community, The Economic Journal, 237–250, 1933.

    Google Scholar 

  27. M. Donahoo, K. Calvert and E. Zegura, Center selection and migration for wide-area multicast routing, Journal of High Speed Networks, 6(2), 1997.

    Google Scholar 

  28. M. Donahoo and E. Zegura, Core migration for dynamic multicast routing, In International Conference on Computer Communications and Networks (ICCCN), Washington, DC, 1996.

    Google Scholar 

  29. M. Doob, Economic theory and the problems of a socialist economy, The Economic Journal, 588–598, 1933.

    Google Scholar 

  30. N. Duffield, J. Horowitz, D. Towsley, W. Wei and T. Friedman, Multicastbased loss inference with missing data, IEEE Journal on Selected Areas in Communications, 2002.

    Google Scholar 

  31. E. Graves, R. Srikant and D. Towsley, Decentralized computation of weighted max-min fair bandwidth allocation in networks with multicast flows, In Proceedings Tyrrhenian International Workshop on Digital Communications (IWDC), Taormina, Italy, 2001.

    Google Scholar 

  32. J. Green and J. Laffont, Incentives in Public Decision Making, North-Holland, Amsterdam, 1979.

    Google Scholar 

  33. A. Gupta, D. Stahl and A. Whinston, A stochastic equilibrium model of internet pricing, Journal of Economic Dynamics and Control, 21:697–672, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  34. R. Gupta and J. Walrand, Average bandwidth and delay for reliable multicast, In E. Gelenbe, Ed., System Performance Evaluation-Methodologies and Applications, chapter 13, 191–202, CRC Press, 2000.

    Google Scholar 

  35. B. Hajek and S. Yang, Strategic buyers in a sum bid game for flat networks, 2004, preprint.

    Google Scholar 

  36. J. Hicks, The foundations of welfare economics, Economic Journal, 69:696–712, 1939.

    Article  Google Scholar 

  37. H. Hotelling, Edgeworth’s taxation paradox and the nature of supply and demand functions, Journal of Political Economy, 40:577–616, 1932.

    Article  MATH  Google Scholar 

  38. H. Hotelling, The general welfare in relation to problems of taxation and of railway and utility rates, Econometrica, 6(3):242–269, 1938.

    Article  Google Scholar 

  39. L. Hurwicz, Optimality and informational efficiency in resource allocation processes, In K. Arrow, S. Karlin and P. Suppes, Eds., Mathematical Methods in the Social Sciences, Stanford University Press, 1960.

    Google Scholar 

  40. L. Hurwicz, On informationally decentralized systems, In B. McGuire and R. Radner, Eds., Decision and Organization, Volume in Honor of Jacob Marschak, 297–336, North Holland, 1972.

    Google Scholar 

  41. L. Hurwicz, The design of mechanisms for resource allocation, American Economic Review, 63(2):1–30, 1973.

    Google Scholar 

  42. L. Hurwicz, On the dimensional requirements of informationally decentralized Pareto satisfactory processes, Studies in Resource Allocation Processes, 1977.

    Google Scholar 

  43. L. Hurwicz, On informational decentralization and efficiency in resource allocation mechanisms, In S. Reiter, Ed., MAA Studies in Mathematical Economics, 25:238–350, Mathematical Association of America, 1986.

    Google Scholar 

  44. L. Hurwicz, S. Reiter and D. Saari, On constructing mechanisms with message spaces of minimal dimension for smooth performance functions, mimeo, Northwestern University, 1985.

    Google Scholar 

  45. M. Jackson, Bayesian implementation, Econometrica, 59:461–478, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  46. M. Jackson, Implementation of undominated strategies, Review of Economic Studies, 59:757–775, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  47. M. Jackson, A crash course in implementation theory, Social Choice and Welfare, 18:655–708, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  48. M. Jackson, T. Palfrey and S. Srivastava, Undominated Nash implementation in bounded mechanisms, Games and Economic Behavior, 6:474–501, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  49. H. Jiang and S. Jordan, The role of price in the connection establishment process, European Transactions on Telecommunications, 6(4):421–429, July-Aug. 1995.

    Google Scholar 

  50. R. Johari, S. Mannor, and J. Tsitsiklis, Efficiency loss in a network resource allocation game: the case of elastic supply, 2004, preprint.

    Google Scholar 

  51. R. Johari and J. Tsitsiklis, Efficiency loss in a network resource allocation game, Mathematics of Operations Research, 29(3):407–435, 2003.

    Article  MathSciNet  Google Scholar 

  52. R. Johari and J. Tsitsiklis, Efficiency loss in a Cournot mechanism for network resource allocation, 2004, preprint.

    Google Scholar 

  53. J. Jordan, The informational requirements of local stability in decentralized allocation mechanisms, In T. Groves, R. Radner and S. Reiter, Eds., Information, incentives and economic mechanisms: essays in honor of Leonid Hurwicz, 183–212, University of Minnesota Press, 1987.

    Google Scholar 

  54. S. Jordan and H. Jiang, Connection establishment in high speed networks, IEEE Selected Areas in Communications, 13(7):1150–1161, 1995.

    Article  Google Scholar 

  55. N. Kaldor, Welfare propositions in economics and inter-personal comparisons of utility, Economic Journal, 49:549–552, 1939.

    Article  Google Scholar 

  56. H. Kanemitsu, Informational efficiency and decentralization in optimal resource allocation, The Economic Studies Quarterly, 16:22–40, 1966.

    Google Scholar 

  57. K. Kar, S. Sarkar and L. Tassiulas, Optimization based rate control for multirate multicast sessions, In Proceedings of INFOCOM, Alaska, 2001.

    Google Scholar 

  58. K. Kar, S. Sarkar and L. Tassiulas, A simple rate control algorithm for maximizing total user utility, In Proceedings of INFOCOM, Alaska, 2001.

    Google Scholar 

  59. K. Kar, S. Sarkar and L. Tassiulas, A scalable low overhead rate control algorithm for multirate multicast sessions, IEEE Journal of Selected areas in Communication, Special Issue in Network Support for Multicast Communications, 20(8):1541–1557, October 2002.

    Article  Google Scholar 

  60. S. Kasera, G. Hjalmtysson, D. Towsley and J. Kurose, Scalable reliable multicast using multiple multicast channels, IEEE/ACM Transactions on Networking, 8(3):294–310, 2000.

    Article  Google Scholar 

  61. K. Kautsky, The Social Revolution, Charles Kerr & Co., 1903.

    Google Scholar 

  62. F. Kelly, On tariffs, policing and admission control for multiservice networks, Operations Research Letters, 15:1–9, 1994.

    Article  MATH  Google Scholar 

  63. F. Kelly, Charging and rate control for elastic traffic, European Transactions on Telecommunication, 8(1):33–37, 1997.

    Article  Google Scholar 

  64. F. Kelly, A. Maulloo, and D. Tan, Rate control for communication networks: shadow prices, proportional fairness and stability, Operational Research Society, 49:237–252, 1998.

    Article  MATH  Google Scholar 

  65. T. Koopmans, Analysis of production as an efficient combination of activities, In T. Koopmans, Ed., Activity Analysis of Production and Allocation, (13):33–37, Cowles Commission Monograph, New York, 1951.

    Google Scholar 

  66. T. Koopmans, Three Essays on the State of Economic Science, McGraw-Hill, New York, 1957.

    Google Scholar 

  67. S. Kunniyur and R. Srikant, End to end congestion control schemes: Utility functions, random losses and ECN marks, In Proceedings of INFOCOM, Tel Aviv, Israel, 2000.

    Google Scholar 

  68. R. La and V. Anantharam, Charge-sensitive TCP and rate control on the internet, In Proceedings of INFOCOM, Tel Aviv, Israel, 2000.

    Google Scholar 

  69. S. Lang, Linear Algebra, Springer-Verlag, New York, 1991.

    Google Scholar 

  70. O. Lange, On the Economic Theory of Socialism, University of Minnesota Press, Minneapolis, 1938.

    Google Scholar 

  71. O. Lange, The foundations of welfare economics, Econometrica, 10:215–228, 1942.

    Article  Google Scholar 

  72. V. Lenin, State and Revolution, International Publishers, 1918.

    Google Scholar 

  73. A. Lerner, The concept of monopoly and the measurement of monopoly power, The Review of Economic Studies, 1:157–175, 1934.

    Article  Google Scholar 

  74. A. Lerner, Economic theory and socialist economy, The Review of Economic Studies, 2(1):51–61, 1934.

    Article  Google Scholar 

  75. S. Low and D. Lapsley, Optimization flow control I: Basic algorithm and convergence, IEEE/ACM Transactions on Networking, 7(6):861–874, 1999.

    Article  Google Scholar 

  76. S. Low and P. Varaiya, A new approach to service provisioning in ATM networks, IEEE/ACM Transactions on Networking, 1:547–553, 1993. see also [77] for corrections.

    Article  Google Scholar 

  77. S. Low and P. Varaiya, Corrections to: A new approach to service provisioning in ATM networks, IEEE/ACM Transactions on Networking, 2:312, 1994.

    Google Scholar 

  78. J. MacKie-Mason and H. Varian, Pricing congestible network resources, Journal of Selected Areas in Communications, 13(7):1141–1149, 1995.

    Article  Google Scholar 

  79. J. MacKie-Mason and H. Varian, Some FAQs about usage-based pricing, Computer Networks and ISDN Systems, 28:257–265, 1995.

    Article  Google Scholar 

  80. J. Marschak and E. Lederer, Der neue mittelstand, Grundriss der Nationalokonomik, 1926.

    Google Scholar 

  81. T. Marschak and S. Reichelstein, Network mechanisms, informational efficiency, and hierarchies, Journal of Economic Theory, 78:106–141, 1998.

    Article  Google Scholar 

  82. A. Mas-Colell, M. Whinston, and J. Green, Microeconomic Theory, Oxford University Press, New York, 1995.

    Google Scholar 

  83. E. Maskin, The theory of implementation in Nash equilibrium: A survey, In L. Hurwicz, D. Schmeidler, and H. Sonnenschein, Eds., Social Goals and Social Organization, Chapter 6, 173–204, Cambridge University Press, 1985.

    Google Scholar 

  84. E. Maskin, Nash implementation and welfare optimality, Review of Economic Studies, 66:23–38, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  85. E. Maskin and T. Sjőstrőm, Implementation theory, In K. Arrow, A. Sen and K. Suzumura, Eds., Handbook of Social Choice and Welfare, 1, chapter 5, North Holland, 2002.

    Google Scholar 

  86. L. Massoulie and J. Roberts, Bandwidth sharing: Objectives and algorithms, In Proceedings of INFOCOM, New York, USA, 1999.

    Google Scholar 

  87. J. Moore and R. Repullo, Nash implementation: A full characterization, Econometrica, 58(5):1083–1099, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  88. K. Mount and S. Reiter, The informational size of message spaces, Journal of Economic Theory, 8:161–192, 1974.

    Article  Google Scholar 

  89. K. Mount and S. Reiter, Economic environments for which there are pareto satisfactory mechanisms, Econometrica, 45(4):821–842, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  90. K. Mount and S. Reiter, On the existence of a locally stable dynamic process with a statically minimal message space, In T. Groves, R. Radner and S. Reiter, Eds., Information, Incentives and Economic Mechanisms: Essays in Honor of Leonid Hurwicz, 213–242, University of Minnesota Press, Minneapolis, 1987.

    Google Scholar 

  91. L. Murphy and J. Murphy, Bandwidth allocation by pricing in ATM networks, In Proceedings of the IFIP Broadband Communications, 333–351, 1994.

    Google Scholar 

  92. L. Murphy, J. Murphy and E. Posner, Distributed pricing for embedded ATM networks, In Proceedings of the International Teletraffic Congress, ITC-14, 1994.

    Google Scholar 

  93. O. Neurath, Durch die Kriegswirtschaft zur Naturalwirtschaft, Callwey, München, 1919.

    Google Scholar 

  94. T. Palfrey, Implementation theory, In R. Aumann and S. Hart, Eds., Handbook of Game Theory, III:2271–2326, Elsevier Science, 2002.

    Google Scholar 

  95. T. Palfrey and S. Srivastava, Implementation with incomplete information in exchange economies, Econometrica, 57:115–134, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  96. T. Palfrey and S. Srivastava, Nash implementation using undominated strategies, Econometrica, 59:479–502, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  97. T. Palfrey and S. Srivastava, Implementation in bayesian equilibrium: The multiple equilibrium problem in mechanism design, Volume I, In J. Laffont, Ed., Advances in Economic Theory, in Econometric Society Monographs, (20):283–323, Cambridge University Press, 1992.

    Google Scholar 

  98. T. Palfrey and S. Srivastava, Bayesian Implementation, Fundamentals of Pure and Applied Economics, 53, Harwood academic, 1993.

    Google Scholar 

  99. V. Pareto, La courbe des revenus, Le Monde economique, 1896.

    Google Scholar 

  100. V. Pareto, The new theories of economics, Journal of Political Economics, 5:485–502, 1896.

    Article  Google Scholar 

  101. V. Pareto, Manual of Political Economy, Augustus Kelly, New York, 1906.

    Google Scholar 

  102. W. Park, H. Owen and E. Zegura, Sonet/SDH multicast routing algorithms in symmetrical three-stage networks, In IEEE International Conference on Communications, Seattle, WA, 1995.

    Google Scholar 

  103. C. Parris and D. Ferrari, A resource based pricing policy for real-time channels in a packet-switching network, Technical Report TR-92-018, International Computer Science Institute, Berkeley, CA, 1992.

    Google Scholar 

  104. C. Parris, S. Keshav and D. Ferrari, A framework for the study of pricing in integrated networks, Technical Report TR-92-016, International Computer Science Institute, Berkeley, CA, 1992.

    Google Scholar 

  105. N. Pierson, Das Wertproblem in der sozialistischen Gesellschaft, 1902.

    Google Scholar 

  106. A. Postlewaite and D. Schmeideler, Implementation in differential information economies, Journal of Economic Theory, 39:14–33, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  107. S. Reichelstein and S. Reiter, Game forms with minimal message spaces, Econometrica, 56(3):661–692, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  108. S. Reiter, Informational efficiency of iterative processes and the size of message spaces, Discussion Paper 11, Center for Mathematical Studies in Economics and Management Science, Northwestern University, 1972.

    Google Scholar 

  109. S. Reiter, The knowledge revealed by an allocation process and the informational size of the message space, Discussion Paper 6, Center for Mathematical Studies in Economics and Management Science, Northwestern University, 1972.

    Google Scholar 

  110. S. Reiter, Information and performance in the (new) welfare economics, The American Economic Review, 67(1):226–234, 1977, Papers and Proceedings of the Eighty-ninth Annual Meeting of the American Economic Association.

    Google Scholar 

  111. D. Rubenstein, J. Kurose and D. Towsley, The impact of multicast layering on network fairness, In Proceedings of ACM SIGCOMM, Cambridge, MA, 1999.

    Google Scholar 

  112. T. Saijo, Strategy space reduction in Maskin’s theorem: Sufficient conditions for Nash implementation, Econometrica, 56:693–700, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  113. P. Samuelson, Foundations of Economic Analysis, Harvard University Press, Cambridge, MA, 1947.

    MATH  Google Scholar 

  114. S. Sanghavi and B. Hajek, Optimal allocation of a divisible good to strategic buyers, 2004, preprint.

    Google Scholar 

  115. S. Sarkar and L. Tassiulas, Fair allocation of resources in multirate multicast trees, In Proceedings of Globecom, 1999.

    Google Scholar 

  116. S. Sarkar and L. Tassiulas, Distributed algorithms for computation of fair rates in multirate multicast trees, In Proceedings of INFOCOM, Tel Aviv, Israel, 2000.

    Google Scholar 

  117. S. Sarkar and L. Tassiulas, Fair allocation of discrete bandwidth layers in multicast networks, In Proceedings of INFOCOM, Tel Aviv, Israel, 2000.

    Google Scholar 

  118. S. Sarkar and L. Tassiulas, Back pressure based multicast scheduling for fair bandwidth allocation, In Proceedings of INFOCOM, Alaska, 2001.

    Google Scholar 

  119. S. Sarkar and L. Tassiulas, Fair allocation of utilities in multirate multicast networks: A framework for unifying diverse fairness objective, IEEE Transactions on Automatic Control, 47(6):931–944, 2002.

    Article  MathSciNet  Google Scholar 

  120. H. Scarf, The Computation of Economic Equilibria, Yale University Press, New Haven and London, 1973.

    MATH  Google Scholar 

  121. J. Shapiro, J. Kurose, D. Towsley and S. Zabele, Topology discovery service for router-assisted multicast transport, In Proceedings of IEEE Open Architectures and Network Programming, 14–24, 2002.

    Google Scholar 

  122. J. K. Shapiro, D. Towsley and J. Kurose, Optimization-based congestion control for multicast communications, IEEE Communications Magazine, 40(9):90–95, 2002.

    Article  Google Scholar 

  123. T. Sjőstrőm, Implementation in perfect equilibrium, Social Choice and Welfare, 10:97–106, 1993.

    MathSciNet  Google Scholar 

  124. V. Smith, Incentive compatible experimental processes for the provision of public goods, In Research in Experimental Economics, Eds.: V. Smith, Greenwich, CT: JAI Press, 1979.

    Google Scholar 

  125. T. Stoenescu, Decentralized Resource Allocation in Networks, PhD thesis, University of Michigan, 2004.

    Google Scholar 

  126. T. Stoenescu, M. Liu and D. Teneketzis, A pricing mechanism for optimal rate allocation in multicast service provisioning, IEEE Transaction in Automatic Control, 2004, submitted.

    Google Scholar 

  127. T. Stoenescu and D. Teneketzis, Minimal message space Nash implementation of unicast resource allocation problems in networks, in preparation.

    Google Scholar 

  128. T. Stoenescu and D. Teneketzis, Informational efficiency of pricing mechanisms in unicast service provisioning, in preparation.

    Google Scholar 

  129. T. Stoenescu and D. Teneketzis, A pricing methodology for resource allocation and routing in integrated-service networks with quality of service requirements, Mathematical Methods of Operations Research (MMOR), 56(2), 2002.

    Google Scholar 

  130. F. Taylor, The guidance of production in a socialist state, The American Economic Review, 19(1):1–8, 1929.

    Google Scholar 

  131. P. Thomas and D. Teneketzis, An approach to service provisioning with quality of service requirements in ATM Networks, Journal of High Speed Networks, 6(4):263–291, 1997.

    Google Scholar 

  132. P. Thomas, D. Teneketzis, and J. MacKie-Mason, A market-based approach to optimal resource allocation in integrated-services connection-oriented networks, Operations Research, 50(5):603–616, 2002.

    Article  MathSciNet  Google Scholar 

  133. W. Thompson, Concepts of implementation, Japanese Economic Review, 47:133–143, 1996.

    Google Scholar 

  134. H. Tzeng and K. Siu, On max-min fair congestion for multicast ABR service in ATM, IEEE Journal on Selected Areas in Communication, 15(3), 1997.

    Google Scholar 

  135. F. von Hayek, The nature and history of the problem, In F. von Hayek, Ed., Collectivist Economic Planning: Critical Studies on the Possibilities of Socialism, 1–40, George Routledge & Sons, London, 1935.

    Google Scholar 

  136. F. von Hayek, The present state of the debate, In F. von Hayek, Ed., Collectivist Economic Planning: Critical Studies on the Possibilities of Socialism, 201–243, George Routledge & Sons, London, 1935.

    Google Scholar 

  137. F. von Hayek, Economics and knowledge, Economica, 4:33–54, 1937.

    Article  Google Scholar 

  138. F. von Hayek, The socialist calculation: The competitive solution, Economica, 7(26):125–149, 1940.

    Article  Google Scholar 

  139. F. von Hayek, The use of knowledge in society, The American Economic Review, 35(4):519–530, 1945.

    Google Scholar 

  140. L. von Mises, Die wirtschaftsrechnung im sozialistischen gemeinwesen, Archiv für Sozialwissenschaft, 47:86–121, 1920.

    Google Scholar 

  141. L. Walras, Éléments d’Économie Politique Pure, ou Théorie de la Richesse Sociale, Paris: Pichon et Durad-Auzias, Lausanne, 1874.

    Google Scholar 

  142. Q. Wang, J. Peha and M. Sirbu, Optimal pricing for integrated-services networks, In L. W. McKnight and J. P. Bailey, Eds., Internet Economics, 353–376, MIT Press, Cambridge, MA, 3rd Edition, 1997.

    Google Scholar 

  143. S. Williams, Necessary and sufficient conditions for existence of a locally stable process, Preprint 88, Institute for Mathematics and Its Applications, University of Minnesota, 1984.

    Google Scholar 

  144. E. Zegura, Routing algorithms in multicast switching topologies, In Proceedings of the Allerton Conference on Communication, Control and Computing, Monticello, IL, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Boston

About this chapter

Cite this chapter

Stoenescu, T.M., Teneketzis, D. (2005). Decentralized Resource Allocation Mechanisms in Networks: Realization and Implementation. In: Abed, E.H. (eds) Advances in Control, Communication Networks, and Transportation Systems. Systems and Control: Foundations & Applications. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4409-1_13

Download citation

Publish with us

Policies and ethics