Skip to main content

Phyysiological Targets of Artificial Gravity: Adaptive Processes in Bone

  • Chapter
Artificial Gravity

Part of the book series: The Space Technology Library ((SPTL,volume 20))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alkner BA, Tesch PA (2004) Knee extensor and plantar flexor muscle size and function in response to 90 d bed rest with or without resistance exercise. Eur J Appl Physiol 93: 294

    Article  Google Scholar 

  • Allison N, Brooks B (1921) An experimental study of the changes in bone which result from non-use. Surg Gynec Obstet 33: 250-260

    Google Scholar 

  • Ammann P, Bourrin S, Bonjour JP et al. (2000) Protein undernutrition-induced bone loss is associated with decreased IGF-I levels and estrogen deficiency. J Bone Miner Res 15: 683-690

    Article  Google Scholar 

  • Ammann P, Laib A, Bonjour JP et al. (2002) Dietary essential amino acid supplements increase bone strength by influencing bone mass and bone microarchitecture in ovariectomized adult rats fed an isocaloric low-protein diet. J Bone Miner Res 17: 1264-1272

    Article  Google Scholar 

  • Amtmann EO (1973) Changes in functional construction of bone in rats under conditions of simulated increased gravity. Z Anat Entwickl-Gesch 139: 307-318

    Article  Google Scholar 

  • Bacabac RG, Smit TH, Mullender MG et al. (2004) Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem Biophys Res Commun 315: 823

    Article  Google Scholar 

  • Baron JA, Karagas M, Barrett J et al. (1996) Basic epidemiology of fractures of the upper and lower limb among Americans over 65 years of age. Epidemiology 7: 612

    Article  Google Scholar 

  • Bass S, Pearce G, Bradney M et al. (1998) Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res 13: 500

    Article  Google Scholar 

  • Bass S, Pearce G, Young N et al. (1994) Bone mass during growth: the effects of exercise. Exercise and mineral accrual. Acta Univ Carol (Praha) 40: 3

    Google Scholar 

  • Bass SL, Saxon L, Daly RM et al. (2002) The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J Bone Miner Res 17: 2274

    Article  Google Scholar 

  • Bergula AP, Huang W, Frangos JA (1999) Femoral vein ligation increases bone mass in the hindlimb suspended rat. Bone 24: 171

    Article  Google Scholar 

  • Biering-Sorensen F, Bohr HH, Schaadt OP (1990) Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Invest 20: 330

    Google Scholar 

  • Biewener AA (1983) Allometry of quadrupedal locomotion: the scaling of duty factor, bone curvature and limb orientation to body size. J Exp Biol 105: 147

    Google Scholar 

  • Biewener AA (1990) Biomechanics of mammalian terrestrial locomotion. Science 250: 1097

    Article  Google Scholar 

  • Biewener AA, Thomason J, Goodship A et al. (1983) Bone stress in the horse forelimb during locomotion at different gaits: a comparison of two experimental methods. J Biomech 16: 565

    Article  Google Scholar 

  • Boland RL, Feldman D, Pike JW et al. (2005) Vitamin D and muscle. In: Vitamin D. Elsevier Academic Press, San Diego, pp 883

    Google Scholar 

  • Bourrin S, Ammann P, Bonjour JP et al. (2000a) Dietary protein restriction lowers plasma insulin-like growth factor I (IGF-I), impairs cortical bone formation, and induces osteoblastic resistance to IGF-I in adult female rats. Endocrinology 141: 3149-3155

    Article  Google Scholar 

  • Bourrin S, Toromanoff A, Ammann P et al. (2000b) Dietary protein deficiency induces osteoporosis in aged male rats. J Bone Miner Res 15: 1555-1563

    Article  Google Scholar 

  • Boyde A (1972) Scanning electron microscope studies of bone. In: The Biochemistry and Physiology of Bone. Bourne GH (ed) Academic Press, New York, pp 259-310

    Google Scholar 

  • Braun MJ, Meta MD, Schneider P et al. (1998) Clinical evaluation of a high-resolution new peripheral quantitative computerized tomography (pQCT) scanner for the bone densitometry at the lower limbs. Phys Med Biol 43: 2279

    Article  Google Scholar 

  • Burr DB, Milgrom C, Fyhrie D et al. (1996) In vivo measurement of human tibial strains during vigorous activity. Bone 18: 405

    Article  Google Scholar 

  • Carey E (1929) Studies in the dynamics of histogenesis. Radiology 3: 127-168

    Google Scholar 

  • Chenu C (2004) Role of innervation in the control of bone remodeling. J Musculo-skelet Neuronal Interact 4: 132-134

    Google Scholar 

  • Cooper PR, Milgram JW, Robinson RA (1966) Morphology of the osteon: an electron microscopic study. J Bone Joint Surgery 48: 1239-1271

    Google Scholar 

  • Cotton JR, Winwood K, Zioupos P et al. (2005) Damage rate is a predictor of fatigue life and creep strain rate in tensile fatigue of human cortical bone samples. J Biomech Eng 127: 213

    Article  Google Scholar 

  • Cummings SR (2002) How drugs decrease fracture risk: lessons from trials. J Musculoskelet Neuronal Interact 2: 198-200

    Google Scholar 

  • Currey JD (1984) Effects of differences in mineralization on the mechanical properties of bone. Philos Trans R Soc Lond B Biol Sci 304: 509

    Google Scholar 

  • Currey JD (2002) Bones: Structure and Mechanics. Princeton University Press, Princeton

    Google Scholar 

  • Currey JD (2003) The many adaptations of bone. J Biomechanics 36: 1487

    Article  Google Scholar 

  • Diab T, Condon KW, Burr DB et al. (2006) Age-related change in the damage morphology of human cortical bone and its role in bone fragility. Bone 38: 427

    Article  Google Scholar 

  • Dickerman RD, Pertusi R, Smith GH (2000) The upper range of lumbar spine bone mineral density? An examination of the current world record holder in the squat lift. Int J Sports Med 21: 469

    Article  Google Scholar 

  • Doden E, Oyama J, Amtmann E (1978) Effect of chronic centrifugation on bone density in the dog. Anat Embryol 153: 321-329

    Article  Google Scholar 

  • Ebbesen EN, Thomsen JS, Beck-Nielsen H et al. (1998) Vertebral bone density evaluated by dual-energy X-ray absorptiometry and quantitative computed tomography in vitro. Bone 23: 283

    Article  Google Scholar 

  • Ebbesen EN, Thomsen JS, Beck-Nielsen H et al. (1999) Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing. Bone 25: 713

    Article  Google Scholar 

  • Ebbesen EN, Thomsen JS, Mosekilde L (1997) Nondestructive determination of iliac crest cancellous bone strength by pQCT. Bone 21: 535

    Article  Google Scholar 

  • Epker BN, Frost HM (1966a) Biomechanical control of bone growth and development: a histologic and tetracycline study. J Dent Res 45: 364

    Google Scholar 

  • Epker BN, Frost HM (1966b) Periosteal appositional bone growth from age two to age seventy in man. A tetracycline evaluation. Anat Rec 154: 573

    Article  Google Scholar 

  • Eriksen EF, Axelrod DW, Melsen F (1994) Bone histology and bone histo-morphometry. In: Bone Histomorphometry. Eriksen EF, Melsen F (eds) Raven Press, New York, pp 13-20

    Google Scholar 

  • Eser P, Frotzler A, Zehnder Y et al. (2005) Assessment of anthropometric, systemic, and lifestyle factors influencing bone status in the legs of spinal cord injured individuals. Osteoporos Int 16: 26

    Article  Google Scholar 

  • Feller DD, Neville ED (1965) Conversion of acetate to lipids and CO2 by liver of rats exposed to acceleration stress. Am J Physiol 208: 892-895

    Google Scholar 

  • Ferretti JL, Capozza RF, Cointry GR et al. (2000) Densitometric and tomographic analyses of musculoskeletal interactions in humans. J Musculoskelet Neuronal Interact 1: 31-34

    Google Scholar 

  • Ferretti JL, Capozza RF, Cointry GR et al. (1998) Bone mass is higher in women than in men per unit of muscle mass but bone mechanostat would compensate for the difference in the species. Bone 23: S471

    Article  Google Scholar 

  • Ferretti JL, Capozza RF, Zanchetta JR (1996) Mechanical validation of a tomographic (pQCT) index for noninvasive estimation of rat femur bending strength. Bone 18: 97

    Article  Google Scholar 

  • Frost HM (1960) Presence of microscopic cracks ’in vivo’ in bone. Henry Ford Hospital Medical Bulletin 8: 25

    Google Scholar 

  • Frost HM (1987a) Bone "mass" and the "mechanostat": a proposal. Anat Rec 219: 1

    Article  Google Scholar 

  • Frost HM (1987b) The mechanostat: a proposed pathogenic mechanism of osteo-poroses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner 2: 73

    Google Scholar 

  • Frost HM (1990a) Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s law: the bone modeling problem. Anat Rec 226: 403

    Article  Google Scholar 

  • Frost HM (1990b) Skeletal structural adaptations to mechanical usage (SATMU): 2. Redefining Wolff’s law: the remodeling problem. Anat Rec 226: 414

    Article  Google Scholar 

  • Frost HM (1998a) On rho, a marrow mediator, and estrogen: Their roles in bone strength and ’mass’ in human females, osteopenias, and osteoporoses - insights from a new paradigm. J Bone Mineral Metabolism 16: 113

    Article  Google Scholar 

  • Frost HM (1998b) Osteoporoses: New Concepts and Some Implications for Future Diagnosis, Treatment and Research (based on insights from the Utah paradigm). Ernst Schering Research Foundation, Berlin

    Google Scholar 

  • Frost HM (2003) Bone’s mechanostat: A 2003 update. The Anatomical Record Part A 275A: 1081

    Article  Google Scholar 

  • Frost HM (2004) The Utah Paradigm of Skeletal Physiology. ISMNI, Athens.

    Google Scholar 

  • Galilei G (1638) Discorsi e dimonstrazioni matematiche, intorno a due nuove scienze attentanti alla meccanica ed a movimenti locali. University of Wisconsin Press, Madison

    Google Scholar 

  • Gazenko OG, Prokhonchukov AA, Panikarovskii VV et al. (1977) [State of the microscopic and crystalline structures, the microhardness and mineral saturation of human bone tissue after prolonged space flight]. Kosm Biol Aviakosm Med 11: 11-20

    Google Scholar 

  • Gray RJK (1974) Compressive fatigue behavior of bovine compact bone. J Biomech 7: 292

    Article  Google Scholar 

  • Grimston SK, Screen J, Haskell JH et al. (2006) Role of connexin43 in osteoblast response to physical load. Ann N Y Acad Sci 1068: 214-224

    Article  Google Scholar 

  • Gullberg B, Johnell O, Kanis JA (1997) World-wide projections for hip fracture. Osteoporos Int 7: 407

    Article  Google Scholar 

  • Hartman W, Schamhardt HC, Lammertink JL et al. (1984) Bone strain in the equine tibia: an in vivo strain gauge analysis. Am J Vet Res 45: 880-884

    Google Scholar 

  • Havers C (1691) Osteologia Nova. Samuel Smith, London

    Google Scholar 

  • Hawkins SA, Wiswell RA, Jaque SV et al. (1999) The inability of hormone replacement therapy or chronic running to maintain bone mass in master athletes. J Gerontol A Biol Sci Med Sci 54: M451

    Google Scholar 

  • Heaney RP (2003) How does bone support calium homeostasis. Bone 33: 264

    Article  Google Scholar 

  • Heinonen A, Oja P, Sievanen H et al. (1998) Effect of two training regimens on bone mineral density in healthy perimenopausal women: a randomized controlled trial. J Bone Miner Res 13: 483

    Article  Google Scholar 

  • Huiskes R, Ruimerman R, van Lenthe GH et al. (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405: 704

    Article  Google Scholar 

  • Iwase S, Takada H, Watanabe Y et al. (2004) Effect of centrifuge-induced artificial gravity and ergometric exercise on cardiovascular deconditioning, myatrophy, and osteoporosis induced by a -6 degrees head-down bedrest. J Gravit Physiol 11: 243-244

    Google Scholar 

  • Jaekel E, Amtmann E, Oyama J (1977) Effect of chronic centrifugation on bone density of the rat. Anat Embryol 155: 223-232

    Article  Google Scholar 

  • Jankovich JP (1971) Structural development of bonein the rat under earth gravity, simulated weightlessness, hypergravity and mechanical vibration. In: NASA Contractor Report 1823. National Technical Information Service, Springfield, Virginia

    Google Scholar 

  • Jee WS, Wronski TJ, Morey ER et al. (1983) Effects of spaceflight on trabecular bone in rats. Am J Physiol 244: R310

    Google Scholar 

  • Jett S, Ramser JR, Frost HM et al. (1966) Bone turnover and osteogenesis imperfecta. Arch Pathol 81: 112

    Google Scholar 

  • Kalkwarf HJ, Specker BL (1995) Bone mineral loss during lactation and recovery after weaning. Obstet Gynecol 86: 26

    Article  Google Scholar 

  • Kalkwarf HJ, Specker BL, Heubi JE et al. (1996) Intestinal calcium absorption of women during lactation and after weaning. Am J Clin Nutr 63: 526

    Google Scholar 

  • Kanis JA, Johnell O, Oden A et al. (2001) Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int 12: 989

    Article  Google Scholar 

  • Kannus P, Haapasalo H, Sievanen H et al. (1994) The site-specific effects of long-term unilateral activity on bone mineral density and content. Bone 15: 279

    Article  Google Scholar 

  • Kaplan FS, Fiori J, LS DLP et al. (2006) Dysregulation of the BMP-4 signaling pathway in fibrodysplasia ossificans progressiva. Ann N Y Acad Sci 1068: 54-65

    Article  Google Scholar 

  • Kontulainen S, Kannus P, Haapasalo H et al. (1999) Changes in bone mineral content with decreased training in competitive young adult tennis players and controls: a prospective 4-yr follow-up. Med Sci Sports Exerc 31: 646

    Article  Google Scholar 

  • LeBlanc AD, Schneider VS, Evans HJ et al. (1990) Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res 5: 843

    Google Scholar 

  • Li J, Miller MA, Hutchins GD, Burr DB (2005) Imaging bone microdamage in vivo with positron emission tomography. Bone 37: 819

    Article  Google Scholar 

  • Liberman UA, Weiss SR, Broll J et al. (1995) Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteo-porosis. The Alendronate Phase III Osteoporosis Treatment Study Group. N Engl J Med 333: 1437

    Article  Google Scholar 

  • Liu D, Wagner HD, Weiner S (2000) Bending and fracture of compact circumferential and osteonal lamellar bone of the baboon tibia. J Mater Sci Mater Med 11: 49-60

    Article  Google Scholar 

  • Liu D, Weiner S, Wagner HD (1999) Anisotropic mechanical properties of lamellar bone using miniature cantilever bending specimens. J Biomech 32: 647-654

    Article  Google Scholar 

  • Lockwood DR, Vogel JM, Schneider VS et al. (1975) Effect of the diphosphonate EHDP on bone mineral metabolism during prolonged bed rest. J Clin Endocrinol Metab 41: 533

    Article  Google Scholar 

  • Mack PB, LaChange PA, Vose GP et al. (1967) Bone demineralization of foot and hand of Gemini-Titan IV, V and VII astronauts during orbital space flight. Amer J Roentgenology, Radium Therapy, and Nucl Med 100: 503-511

    Google Scholar 

  • Maddalozzo GF, Snow CM (2000) High intensity resistance training: effects on bone in older men and women. Calcif Tissue Int 66: 399

    Article  Google Scholar 

  • Marenzana M, Shipley AM, Squitiero P et al. (2005) Bone as an ion exchange organ: evidence for instantaneous cell-dependent calcium efflux from bone not due to resorption. Bone 37: 545

    Article  Google Scholar 

  • Martin DE, Severns AE, Kabo JM (2004) Determination of mechanical stiffness of bone by pQCT measurements: correlation with non-destructive mechanical four-point bending test data. J Biomech 37: 1289

    Article  Google Scholar 

  • Martin RB, Burr DB, Sharkey NA (1998) Skeletal Tissue Mechanics. Springer-Verlag, New York

    Google Scholar 

  • McMahon TA (1975) Using body size to understand the structural design of animals: quadrupedal locomotion. J Appl Physiol 39: 619

    Google Scholar 

  • Mekraldi S, Toromanoff A, Rizzoli R et al. (2005) Pamidronate prevents bone loss and decreased bone strength in adult female and male rats fed an isocaloric low-protein diet. J Bone Miner Res 20: 1365-1371

    Article  Google Scholar 

  • Milliken LA, Going SB, Houtkooper LB et al. (2003) Effects of exercise training on bone remodeling, insulin-like growth factors, and bone mineral density in postmenopausal women with and without hormone replacement therapy. Calcif Tissue Int 72: 478

    Article  Google Scholar 

  • Mori S, Burr DB (1993) Increased intracortical remodeling following fatigue damage. Bone 14: 103

    Article  Google Scholar 

  • Mullender MG, Huiskes R, Versleyen H et al. (1996) Osteocyte density and histomorphometric parameters in cancellous bone of the proximal femur in five mammalian species. J Orthop Res 14: 972-979

    Article  Google Scholar 

  • Neer RM, Arnaud CD, Zanchetta JR et al. (2001) Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344: 1434

    Article  Google Scholar 

  • Nikander R, Sievanen H, Uusi-Rasi K et al. (2006) Loading modalities and bone structures at nonweight-bearing upper extremity and weight-bearing lower extremity: A pQCT study of adult female athletes. Bone, in press

    Google Scholar 

  • Oganov VS, Grigor’ev AI, Voronin LI et al. (1992) [Bone mineral density in cosmonauts after flights lasting 4.5-6 months on the Mir orbital station]. Aviakosm Ekolog Med 26: 20

    Google Scholar 

  • Owan I, Burr DB, Turner CH et al. (1997) Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain. Am J Physiol 273: C810

    Google Scholar 

  • Oyama J (1975) Response and adaptation of beagle dogs to hypergravity. Life Sci and Space Res 13: 10-17

    Google Scholar 

  • Oyama J, Platt WY (1965) Effects of prolonged centrifugation on growth and organ development of rats. Am J Physiol 209: 611-615

    Google Scholar 

  • Oyama J, Zeitman B (1967) Tissue composition of rats exposed to chronic centri-fugation. Am J Physiol 213: 1305-1310

    Google Scholar 

  • Özkaya N, Nordin M (1998) Fundamentals of Biomechanics. Springer, New York.

    Google Scholar 

  • Parfitt AM (2003) Misconceptions (3): calcium leaves bone only by resorption and enters only by formation. Bone 33: 259

    Article  Google Scholar 

  • Parfitt AM, Drezner MK, Glorieux FH et al. (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2: 595

    Google Scholar 

  • Parfitt AM, Mundy GR, Roodman GD et al. (1996) A new model for the regulation of bone resorption, with particular reference to the effects of bisphosphonates. J Bone Miner Res 11: 150

    Google Scholar 

  • Prokhonchukov AA, Leont’ev VK, Zhizhina NA et al. (1980) State of the protein fraction of human bone tissue following space flight. Kosm Biol Aviakosm Med 14: 14-18

    Google Scholar 

  • Prokhonchukov AA, Zaitsev VP, Shakhunov BA et al. (1978) Effect of space flight on the concentration of sodium, copper, manganese and magnesium in the bones of the skeleton. Patol Fiziol Eksp Ter 65-70

    Google Scholar 

  • Qiu S, Rao DS, Palnitkar S et al. (2002) Age and distance from the surface but not menopause reduce osteocyte density in human cancellous bone. Bone 31: 313-318

    Article  Google Scholar 

  • Rambaut PC, Smith MC, Mack PB et al. (1975) Skeletal Response. In: Biomedical Results of Apollo. Johnston RS, Dietlein LF, Berry CA (eds) NASA Washington DC, pp 303-322

    Google Scholar 

  • Rauch F (2006) Material matters: a mechanostat-based perspective on bone development in osteogenesis imperfecta and hypophosphatemic rickets. J Musculoskelet Neuronal Interact 6: 142-146

    Google Scholar 

  • Reeve J (1996) PTH: a future role in the management of osteoporosis? J Bone Miner Res 11: 440-445

    Article  Google Scholar 

  • Reeve J, Meunier PJ, Parsons JA et al. (1980) Anabolic effect of human parathyroid hormone fragment on trabecular bone in involutional osteoporosis: a multicentre trial. Br Med J 280: 1340-1344

    Google Scholar 

  • Rhodes EC, Martin AD, Taunton JE et al. (2000) Effects of one year of resistance training on the relation between muscular strength and bone density in elderly women. Br J Sports Med 34: 18

    Article  Google Scholar 

  • Riggins RS, Chacko KA (1977) The effect of increased gravitational stress on bone. Life Sci Space Res 15: 263-265

    Google Scholar 

  • Rittweger J, Beller G, Ehrig J et al. (2000) Bone-muscle strength indices for the human lower leg. Bone 27: 319

    Article  Google Scholar 

  • Rittweger J, Felsenberg D (2004) Resistive vibration exercise prevents bone loss during 8 weeks of strict bed rest in healthy male subjects: Results from the Berlin BedRest (BBR) study. J Bone Miner Res 19: 1145

    Google Scholar 

  • Rittweger J, Frost HM, Schiessl H et al. (2005) Muscle atrophy and bone loss after 90 days of bed rest and the effects of Flywheel resistive exercise and Pamidronate: Results from the LTBR study. Bone 36: 1019

    Article  Google Scholar 

  • Rittweger J, Gerrits K, Altenburg T et al. (2006a) Epiphyseal bone adaptation to altered loading after spinal cord injury: A study of bone and muscle strength. J Musculoskel Neuron Interact 6

    Google Scholar 

  • Rittweger J, Winwood K, Seynnes O et al. (2006b) Bone loss fromt the human distal tibia epiphysis during 24 days of unilateral limb suspension. J Physiol, in press

    Google Scholar 

  • Robins SP, Stewart P, Astbury C et al. (1986) Measurement of the cross linking compound, pyridinoline, in urine as an index of collagen degradation in joint disease. Ann Rheum Dis 45: 969-973

    Article  Google Scholar 

  • Schiessl H, Frost HM, Jee WS (1998) Estrogen and bone-muscle strength and mass relationships. Bone 22: 1

    Article  Google Scholar 

  • Schirrmacher K, Nonhoff D, Wiemann M et al. (1996) Effects of calcium on gap junctions between osteoblast-like cells in culture. Calcif Tissue Int 59: 259

    Article  Google Scholar 

  • Schonau E, Schwahn B, Rauch F (2002) The muscle-bone relationship: methods and management - perspectives in glycogen storage disease. Eur J Pediatr 161 Suppl 1: S50

    Article  Google Scholar 

  • Schonau E, Werhahn E, Schiedermaier U et al. (1996) Influence of muscle strength on bone strength during childhood and adolescence. Horm Res 45 Suppl 1: 63

    Article  Google Scholar 

  • Shackelford LC, LeBlanc AD, Driscoll TB et al. (2004) Resistance exercise as a countermeasure to disuse-induced bone loss. J Appl Physiol 97: 119

    Article  Google Scholar 

  • Sievanen H, Kannus P, Nieminen V et al. (1996) Estimation of various mechanical characteristics of human bones using dual energy X-ray absorptiometry: methodology and precision. Bone 18: 17S

    Article  Google Scholar 

  • Sievanen H, Koskue V, Rauhio A et al. (1998) Peripheral quantitative computed tomography in human long bones: evaluation of in vitro and in vivo precision. J Bone Miner Res 13: 871

    Article  Google Scholar 

  • Skerry TM (2006) One mechanostat or many? Modifications of the site-specific response of bone to mechanical loading by nature and nurture. J Musculoskelet Neuronal Interact 6: 122-127

    Google Scholar 

  • Smith AH, Kelly CF (1963) Influence of chronic acceleration upon growth and body composition. Ann NY Acad Sci 110: 410-424

    Article  Google Scholar 

  • Smith AH, Winget CM, Kelly CF (1959) Physiological effects of artificial alterations in in weight. Nav Res Rev 16-24

    Google Scholar 

  • Smith MC, Rambaut PC, Vogel JM et al. (1978) Bone Mineral Measurement - Experiment M078. In: Biomedical Results from Skylab. NASA Washington DC, pp 183

    Google Scholar 

  • Smith S (1975) Effets of long-term rotation and hypergravity on developing rat femurs. Aviat Space Environ Med 46: 248-253.

    Google Scholar 

  • Smith S (1977) Femoral development in chronically centrifuged rats. Aviat Space Environ Med 48: 828-835

    Google Scholar 

  • Specker B, Binkley T (2003) Randomized trial of physical activity and calcium supplementation on bone mineral content in 3- to 5-year-old children. J Bone Miner Res 18: 885

    Article  Google Scholar 

  • Specker B, Binkley T, Fahrenwald N (2004) Increased periosteal circumference remains present 12 months after an exercise intervention in preschool children. Bone 35: 1383

    Article  Google Scholar 

  • Stupakov GP, Kazeikin VS, Kozlovskii AP et al. (1984) Evaluation of the changes in the bone structures of the human axial skeleton in prolonged space flight. Kosm Biol Aviakosm Med 18: 33

    Google Scholar 

  • Takahashi H, Epker B, Frost HM (1964) Resorption precedes formative activity. Surg Forum 15: 437

    Google Scholar 

  • Talmage RV (2004) Perspectives on calcium homeostasis. Bone 35: 577

    Article  Google Scholar 

  • Thompson DA (1917) On Growth and Form. Cambridge University Press, Cambridge

    Google Scholar 

  • Tilton FE, Degioanni JJC, Schneider VS (1980) Long-term follow-up of Skylab bone demineralization. Aviat Space Environ Med 51: 1209

    Google Scholar 

  • Tsuzuku S, Ikegami Y, Yabe K (1998) Effects of high-intensity resistance training on bone mineral density in young male powerlifters. Calcif Tissue Int 63: 283

    Article  Google Scholar 

  • Turner CH (1999) Site-specific skeletal effects of Exercise: Importance of interstitial fluid pressure. Bone 24: 161

    Article  Google Scholar 

  • Umemura Y, Ishiko T, Yamauchi T et al. (1998) Five jumps per day increase bone mass and breaking force in rats. J Bone Mineral Res 12: 1480

    Article  Google Scholar 

  • Van Loon JJ, Bervoets DJ, Burger EH et al. (1995) Decreased mineralization and increased calcium release in isolated fetal mouse long bones under near weightlessness. J Bone Miner Res 10: 550

    Google Scholar 

  • Verschueren SM, Roelants M, Delecluse C et al. (2004) Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J Bone Miner Res 19: 352

    Article  Google Scholar 

  • Vestergaard P, Krogh K, Rejnmark L et al. (1998) Fracture rates and risk factors for fractures in patients with spinal cord injury. Spinal Cord 36: 790

    Article  Google Scholar 

  • Vico L, Barou O, Laroche N et al. (1999) Effects of centrifuging at 2g on rat long bone metaphyses. Eur J Appl Physiol 80: 360-366

    Article  Google Scholar 

  • Vico L, Chappard D, Alexandre C et al. (1987) Effects of a 120 day period of bed-rest on bone mass and bone cell activities in man: attempts at countermeasure. Bone Miner 2: 383

    Google Scholar 

  • Vico L, Collet P, Guignandon A et al. (2000) Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 355: 1607

    Article  Google Scholar 

  • Vigliani F (1955a) Accreschimento e rinnovamento strutturale della compatta in ossa sottratte alle sollecitazioni meccaniche. Nota I. Ricerche sperimentali nel cane. Z Zellforsch 43: 59-76

    Article  Google Scholar 

  • Vigliani F (1955b) Accreschimento e rinnovamento strutturale della compatta in ossa sottratte alle sollecitazioni meccaniche. Nota I. Ricerche sperimentali nel cane. Z Zellforsch 43: 17-47

    Article  Google Scholar 

  • Vincent KR, Braith RW (2002) Resistance exercise and bone turnover in elderly men and women. Med Sci Sports Exerc 34: 17

    Google Scholar 

  • Watanabe Y, Ohshima H, Mizuno K et al. (2004) Intravenous pamidronate prevents femoral bone loss and renal stone formation during 90-day bed rest. J Bone Miner Res 19: 1771

    Article  Google Scholar 

  • Wilks DC, Winwood K, Kwiet A et al. (2006) Bone mass and strength in Master runners: interim analysis. In: XXI Paulo Symposium: Preventing Bone Fragility, Fractures, UKK Institute, Tampere, Finland

    Google Scholar 

  • Wolff J (1870) Über die innere Architectur und ihre Bedeutung für die Frage vom Knochenwachstum. Archiv für Pathologische Anatomie und Physiologie 50: 389

    Article  Google Scholar 

  • Wolff J (1899) Die Lehre von der functionellen Knochengestalt. Archiv für Pathologische Anatomie und Physiologie 155: 256

    Article  Google Scholar 

  • Wunder CC (1960) Altered growth of animals after continual centrifugation. Proc Iowa Acad Sci 67: 488-494

    Google Scholar 

  • Wunder CC, Briney SR, Kral M et al. (1960) Growth of mouse femurs during continual centrifugation. Nature 188: 151-152

    Article  Google Scholar 

  • Yergey AL, Vieira NE, Covell DG (1987) Direct measurement of dietary fractional absorption using calcium isotopic tracers. Biomed Environ Mass Spectrom 14: 603

    Article  Google Scholar 

  • Zanchetta JR, Plotkin H, Alvarez Filgueira ML (1995) Bone mass in children: normative values for the 2-20-year-old population. Bone 16: 393S-399S

    Google Scholar 

  • Ziambaras K, Lecanda F, Steinberg TH et al. (1998) Cyclic stretch enhances gap junctional communication between osteoblastic cells. J Bone Miner Res 13: 218

    Article  Google Scholar 

  • Zioupos P, Currey JD (1998) Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone 22: 57-66

    Article  Google Scholar 

  • Zioupos P, X TW, Currey JD (1996) The accumulation of fatigue microdamage in human cortical bone of two different ages in vitro. Clin Biomech (Bristol, Avon) 11: 365-375

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rittweger, J. (2007). Phyysiological Targets of Artificial Gravity: Adaptive Processes in Bone. In: Clément, G., Bukley, A. (eds) Artificial Gravity. The Space Technology Library, vol 20. Springer, New York, NY. https://doi.org/10.1007/0-387-70714-X_7

Download citation

  • DOI: https://doi.org/10.1007/0-387-70714-X_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-70712-9

  • Online ISBN: 978-0-387-70714-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics