Skip to main content

Physiological Targets of Artificial Gravity: The Neuromuscular System

  • Chapter
Book cover Artificial Gravity

Part of the book series: The Space Technology Library ((SPTL,volume 20))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams GR, Hather BM, Dudley GA (1994) Effect of short-term unweighting on human skeletal muscle strength and size. Aviat Space Environ Med 65: 1116-1121

    Google Scholar 

  • Akima H, Katayama K, Sato K et al. (2005) Intensive cycle training with artificial gravity maintains muscle size during bed rest. Aviat Space Environ Med 76: 923-929

    Google Scholar 

  • Alkner BA, Tesch PA (2004a) Efficacy of a gravity-independent resistance exercise device as a countermeasure to muscle atrophy during 29-day bed rest. Acta Physiol Scand 181: 345-357

    Google Scholar 

  • Alkner BA, Tesch PA (2004b) Knee extensor and plantar flexor muscle size and function following 90 days of bed rest with or without resistance exercise. Eur J Appl Physiol 93: 294-305

    Google Scholar 

  • Andersen JL, Mohr T, Biering-Sorensen Fet al. (1996) Myosin heavy chain isoform transformation in single fibers from m. vastus lateralis in spinal cord injured individuals: effects of long-term functional electrical stimulation (FES). Pflugers Arch 431: 513-518

    Google Scholar 

  • Antonutto G, Bodem F, Zamparo Pet al. (1998) Maximal power and EMG of lower limbs after 21 days spaceflight in one astronaut. J Gravit Physiol 5: P63-66

    Google Scholar 

  • Antonutto G, Capelli C, Di Prampero PE (1991) Pedaling in space as a countermeasure to microgravity deconditioning. Microgravity Quarterly 1: 93-101

    Google Scholar 

  • Antonutto G, Capelli C, Girardis Met al. (1999) Effects of microgravity on maximal power of lower limbs during very short efforts in humans. J Appl Physiol 86: 85-92

    Google Scholar 

  • Antonutto G, Di Prampero PE (2003) Cardiovascular deconditioning in microgravity: some possible countermeasures. Eur J Appl Physiol 90: 283-291

    Google Scholar 

  • Antonutto G, Linnarsson D, Di Prampero PE (1993) On-Earth evaluation of neurovestibular tolerance to centrifuge simulated artificial gravity in humans. Physiologist 36: S85-S87

    Google Scholar 

  • Baerwalde S, Zange J, Muller Ket al. (1999) High-energy-phosphates measured by 31P-MRS during LBNP in exercising human leg muscle. J Gravit Physiol 6: P37-38

    Google Scholar 

  • Baldwin KM, Haddad F (2001) Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle. J Appl Physiol 90: 345-357

    Google Scholar 

  • Baldwin KM, Haddad F (2002) Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms. Am J Phys Med Rehabil 81: S40-51

    Google Scholar 

  • Baldwin KM, Herrick RE, McCue SA (1993) Substrate oxidation capacity in rodent skeletal muscle: effects of exposure to zero gravity. J Appl Physiol 75: 2466-2470

    Google Scholar 

  • Bamman MM, Clarke MS, Feeback DL et al. (1998) Impact of resistance exercise during bed rest on skeletal muscle sarcopenia and myosin isoform distribution. J Appl Physiol 84: 157-163

    Google Scholar 

  • Bamman MM, Hunter GR, Stevens BRet al. (1997) Resistance exercise prevents plantar flexor deconditioning during bed rest. Med Sci Sports Exerc 29: 1462-1468

    Google Scholar 

  • Berg HE, Dudley GA, Haggmark Tet al. (1991) Effects of lower limb unloading on skeletal muscle mass and function in humans. J Appl Physiol 70: 1882-1885

    Google Scholar 

  • Berg HE, Dudley GA, Hather Bet al. (1993) Work capacity and metabolic and morphologic characteristics of the human quadriceps muscle in response to unloading. Clin Physiol 13: 337-347

    Google Scholar 

  • Berg HE, Larsson L, Tesch PA (1997) Lower limb skeletal muscle function after 6 wk of bed rest. J Appl Physiol 82: 182-188

    Google Scholar 

  • Berg HE, Tesch PA (1996) Changes in muscle function in response to 10 days of lower limb unloading in humans. Acta Physiol Scand 157: 63-70

    Google Scholar 

  • Berg HE, Tesch PA (1998) Force and power characteristics of a resistive exercise device for use in space. Acta Astronautica 42: 219-230

    Google Scholar 

  • Bigard AX, Merino D, Lienhard Fet al. (1997) Muscle damage induced by running training during recovery from hindlimb suspension: the effect of dantrolene sodium. Eur J Appl Physiol 76: 421-427

    Google Scholar 

  • Biolo G, Ciocchi B, Lebenstedt M et al. (2004) Short-term bed rest impairs amino acid-induced protein anabolism in humans. J Physiol 558: 381-388

    Google Scholar 

  • Bleakney R, Maffulli N (2002) Ultrasound changes to intramuscular architecture of the quadriceps following intramedullary nailing. J Sports Med Phys Fitness 42: 120-125

    Google Scholar 

  • Blottner D, Salanova M, Puttmann B et al. (2006) Human skeletal muscle structure and function preserved by vibration muscle exercise following 55 days of bed rest. Eur J Appl Physiol 97: 261-271

    Google Scholar 

  • Bottinelli R (2001) Functional heterogeneity of mammalian single muscle fibers: do myosin isoforms tell the whole story? Pflugers Arch 443: 6-17

    Google Scholar 

  • Bottinelli R, Reggiani C (2000) Human skeletal muscle fibers: molecular and functional diversity. Prog Biophys Mol Biol 73: 195-262

    Google Scholar 

  • Burton B, Russel R (1994) Artificial gravity in space flight. J Gravit Physiol 1: 15-18

    Google Scholar 

  • Caiozzo VJ, Baker MJ, Herrick RE (1994) Effect of spaceflight on skeletal muscle: Mechanical properties and myosin isoform content of a slow muscle. J Appl Physiol 76: 1764-1773

    Google Scholar 

  • Caiozzo VJ, Haddad F, Baker MJ et al. (1996) Microgravity-induced transformations of myosin isoforms and contractile properties of skeletal muscle. J Appl Physiol 81: 123-132

    Google Scholar 

  • Chase GA, Grave C, Rowell LB (1966) Independence of changes in functional and performance capacities attending prolonged bed rest. Aerosp Med 37: 1232-1238

    Google Scholar 

  • Chi MM, Choksi R, Nemeth P et al. (1992) Effects of microgravity and tail suspension on enzymes of individual soleus and tibialis anterior fibers. J Appl Physiol 73: 66S-73S

    Google Scholar 

  • Convertino VA (1991) Neuromuscular aspects in development of exercise counter-measures. Physiologist 34: S125-128

    Google Scholar 

  • Convertino VA (2002) Planning strategies for development of effective exercise and nutrition countermeasures for long-duration space flight. Nutrition 18: 880-888

    Google Scholar 

  • Convertino VA, Doerr DF, Stein SL (1989) Changes in size and compliance of the calf after 30 days of simulated microgravity. J Appl Physiol 66: 1509-1512

    Google Scholar 

  • D'Amelio F, Daunton NG (1992) Effects of spaceflight in the adductor longus muscle of rats flown in the Soviet Biosatellite COSMOS 2044. A study employing neural cell adhesion molecule (N-CAM) immunocytochemistry and conventional morphological techniques (light and electron microscopy). J Neuropathol Exp Neurol 51: 415-431

    Google Scholar 

  • D'Antona G, Pellegrino MA, Adami R et al. (2003) The effect of ageing and immobilization on structure and function of human skeletal muscle fibers. J Physiol 552: 499-511

    Google Scholar 

  • De-Doncker L, Kasri M, Picquet Fet al. (2005) Physiologically adaptive changes of the L5 afferent neurogram and of the rat soleus EMG activity during 14 days of hindlimb unloading and recovery. J Exp Biol 208: 4585-4592

    Google Scholar 

  • Desplanches D, Mayet MH, Ilyina-Kakueva EIet al. (1991) Structural and metabolic properties of rat muscle exposed to weightlessness aboard Cosmos 1887. Eur J Appl Physiol Occup Physiol 63: 288-292

    Google Scholar 

  • Di Prampero PE (2000) Cycling on Earth, in space, on the Moon. Eur J Appl Physiol 82: 345-360

    Google Scholar 

  • Di Prampero PE, Narici MV (2003) Muscles in microgravity: from fibers to human motion. J Biomech 36: 403-412

    Google Scholar 

  • Duchateau J (1995) Bed rest induces neural and contractile adaptations in triceps surae. Med Sci Sports Exerc 27: 1581-1589

    Google Scholar 

  • Duchateau J, Hainaut K (1987) Electrical and mechanical changes in immobilized human muscle. J Appl Physiol 62: 2168-2173

    Google Scholar 

  • Dudley GA, Gollnick PD, Convertino VAet al. (1989) Changes of muscle function and size with bedrest. Physiologist 32: S65-66

    Google Scholar 

  • Dudley GA, Hather BM, Buchanan P (1992) Skeletal muscle responses to unloading with special reference to man. J Fla Med Assoc 79: 525-529

    Google Scholar 

  • Duvoisin MR, Convertino VA, Buchanan Pet al. (1989) Characteristics and preliminary observations of the influence of electromyostimulation on the size and function of human skeletal muscle during 30 days of simulated microgravity. Aviat Space Environ Med 60: 671-678

    Google Scholar 

  • Edgerton VR, McCall GE, Hodgson JA et al. (2001) Sensorimotor adaptations to microgravity in humans. J Exp Biol 204: 3217-3224

    Google Scholar 

  • Edgerton VR, Roy RR (1994) Neuromuscular adaptation to actual and simulated weightlessness. Adv Space Biol Med 4: 33-67

    Google Scholar 

  • Edgerton VR, Zhou MY, Ohira Y et al. (1995) Human fiber size and enzymatic properties after 5 and 11 days of spaceflight. J Appl Physiol 78: 1733-1739

    Google Scholar 

  • Ferrando AA, Lane HW, Stuart CAet al. (1996) Prolonged bed rest decreases skeletal muscle and whole body protein synthesis. Am J Physiol 270: E627-633

    Google Scholar 

  • Ferrando AA, Paddon-Jones D, Wolfe RR (2002) Alterations in protein metabolism during space flight and inactivity. Nutrition 18: 837-841

    Google Scholar 

  • Ferrando AA, Tipton KD, Bamman MM, et al. (1997) Resistance exercise maintains skeletal muscle protein synthesis during bed rest. J Appl Physiol 82: 807-810

    Google Scholar 

  • Ferretti G, Antonutto G, Denis C et al. (1997) The interplay of central and peripheral factors in limiting maximal O2 consumption in man after prolonged bed rest. J Physiol 501: 677-686

    Google Scholar 

  • Ferretti G, Berg HE, Minetti AE et al. (2001) Maximal instantaneous muscular power after prolonged bed rest in humans. J Appl Physiol 90: 431-435

    Google Scholar 

  • Fitts RH, Riley DR, Widrick JJ (2000) Physiology of a microgravity environment invited review: microgravity and skeletal muscle. J Appl Physiol 89: 823-839

    Google Scholar 

  • Fitts RH, Riley DR, Widrick JJ (2001) Functional and structural adaptations of skeletal muscle to microgravity. J Exp Biol 204: 3201-3208

    Google Scholar 

  • Fluckey JD, Dupont-Versteegden EE, Montague DC et al. (2002) A rat resistance exercise regimen attenuates losses of musculoskeletal mass during hindlimb suspension. Acta Physiol Scand 176: 293-300

    Google Scholar 

  • Gamrin L, Berg HE, Essen P et al. (1998) The effect of unloading on protein synthesis in human skeletal muscle. Acta Physiol Scand 163: 369-377

    Google Scholar 

  • Greenleaf JE, Bernauer EM, Ertl ACet al. (1989) Work capacity during 30 days of bed rest with isotonic and isokinetic exercise training. J Appl Physiol 67: 1820-1826

    Google Scholar 

  • Grichko VP, Heywood-Cooksey A, Kidd KRet al. (2000) Substrate profile in rat soleus muscle fibers after hindlimb unloading and fatigue. J Appl Physiol 88: 473-478

    Google Scholar 

  • Grigoriev AI, Egorov AD (1991) The effects of prolonged spaceflights on the human body. Adv Space Biol Med 1: 1-35

    Google Scholar 

  • Hargens AR, Whalen RT, Watenpaugh DEet al. (1991) Lower body negative pressure to provide load bearing in space. Aviat Space Environ Med 62: 934-937

    Google Scholar 

  • Hather BM, Adams GR, Tesch PAet al. (1992) Skeletal muscle responses to lower limb suspension in humans. J Appl Physiol 72: 1493-1498

    Google Scholar 

  • Hikida RS, Gollnick PD, Dudley GAet al. (1989) Structural and metabolic characteristics of human skeletal muscle following 30 days of simulated microgravity. Aviat Space Environ Med 60: 664-670

    Google Scholar 

  • Hodgson JA, Bodine-Fowler SC, Roy RR et al. (1991) Changes in recruitment of rhesus soleus and gastrocnemius muscles following a 14 day spaceflight. Physiologist 34: S102-103

    Google Scholar 

  • Howard JD, Enoka RM (1991) Maximum bilateral contractions are modified by neurally mediated interlimb effects. J Appl Physiol 70: 306-316

    Google Scholar 

  • Jasperse JL, Woodman CR, Price EMet al. (1999) Hindlimb unweighting decreases ecNOS gene expression and endothelium-dependent dilation in rat soleus feed arteries. J Appl Physiol 87: 1476-1482

    Google Scholar 

  • Jiang B, Roy RR, Navarro Cet al. (1993) Absence of a growth hormone effect on rat soleus atrophy during a 4-day spaceflight. J Appl Physiol 74: 527-531

    Google Scholar 

  • Kasper CE (1995) Sarcolemmal disruption in reloaded atrophic skeletal muscle. J Appl Physiol 79: 607-614

    Google Scholar 

  • Kawakami Y, Muraoka Y, Kubo Ket al. (2000) Changes in muscle size and architecture following 20 days of bed rest. J Gravit Physiol 7: 53-59

    Google Scholar 

  • Koryak Y (1998) Effect of 120 days of bed-rest with and without countermeasures on the mechanical properties of the triceps surae muscle in young women. Eur J Appl Physiol Occup Physiol 78: 128-135

    Google Scholar 

  • Lackner JR, Graybiel A (1986) Head movements in non-terrestrial force environments elicit motion sickness: implications for the etiology of space motion sickness. Aviat Space Environ Med 57: 443-448

    Google Scholar 

  • Larsson L, Li X, Berg HE, Frontera WR (1996) Effects of removal of weight-bearing function on contractility and myosin isoform composition in single human skeletal muscle cells. Pflugers Arch 432: 320-328

    Google Scholar 

  • LeBlanc A, Gogia P, Schneider V et al. (1988) Calf muscle area and strength changes after five weeks of horizontal bed rest. Am J Sports Med 16: 624-629

    Google Scholar 

  • LeBlanc A, Rowe R, Evans H et al. (1997) Muscle atrophy during long duration bed rest. Int J Sports Med 18 Suppl 4: S283-285

    Google Scholar 

  • Lee SM, Bennett BS, Hargens AR et al. (1997) Upright exercise or supine lower body negative pressure exercise maintains exercise responses after bed rest. Med Sci Sports Exerc 29: 892-900

    Google Scholar 

  • Loughna PT, Goldspink DF, Goldspink G (1987) Effects of hypokinesia and hypodynamia upon protein turnover in hindlimb muscles of the rat. Aviat Space Environ Med 58: A133-138

    Google Scholar 

  • Macias BR, Groppo ER, Eastlack RK et al. (2005) Space exercise and Earth benefits. Curr Pharm Biotechnol 6: 305-317

    Google Scholar 

  • Maganaris CN, Reeves ND, Rittweger J et al. (2006) Adaptive response of human tendon to paralysis. Muscle Nerve 33: 85-92

    Google Scholar 

  • McDonald KS, Delp MD, Fitts RH (1992) Fatigability and blood flow in the rat gastrocnemius-plantaris-soleus after hindlimb suspension. J Appl Physiol 73: 1135-1140

    Google Scholar 

  • McDonald KS, Fitts RH (1995) Effect of hindlimb unloading on rat soleus fiber force, stiffness, and calcium sensitivity. J Appl Physiol 79: 1796-1802

    Google Scholar 

  • Milesi S, Capelli C, Denoth Jet al. (2000) Effects of 17 days bedrest on the maximal voluntary isometric torque and neuromuscular activation of the plantar and dorsal flexors of the ankle. Eur J Appl Physiol 82: 197-205

    Google Scholar 

  • Musacchia XJ, Steffen JM, Fell RD et al. (1992) Skeletal muscle atrophy in response to 14 days of weightlessness: vastus medialis. J Appl Physiol 73: 44S-50S

    Google Scholar 

  • Narici M, Cerretelli P (1998) Changes in human muscle architecture in disuse-atrophy evaluated by ultrasound imaging. J Gravit Physiol 5: P73-74

    Google Scholar 

  • Narici M, Kayser B, Barattini Pet al. (2003) Effects of 17-day spaceflight on electrically evoked torque and cross-sectional area of the human triceps surae. Eur J Appl Physiol 90: 275-282

    Google Scholar 

  • Narici MV, Kayser B, Barattini Pet al. (1997) Changes in electrically evoked skeletal muscle contractions during 17-day spaceflight and bed rest. Int J Sports Med 18 Suppl 4: S290-292

    Google Scholar 

  • Narici MV, Maganaris CN (2006) Adaptability of elderly human muscles and tendons to increased loading. J Anat 208: 433-443

    Google Scholar 

  • Ohira Y, Jiang B, Roy RR et al. (1992) Rat soleus muscle fiber responses to 14 days of spaceflight and hindlimb suspension. J Appl Physiol 73: 51S-57S

    Google Scholar 

  • Ohira Y, Yoshinaga T, Ohara M et al. (1999) Myonuclear domain and myosin phenotype in human soleus after bed rest with or without loading. J Appl Physiol 87: 1776-1785

    Google Scholar 

  • Reeves ND, Maganaris CN, Ferretti Get al. (2005) Influence of 90-day simulated microgravity on human tendon mechanical properties and the effect of resistive countermeasures. J Appl Physiol 98: 2278-2286

    Google Scholar 

  • Reeves NJ, Maganaris CN, Ferretti Get al. (2002) Influence of simulated microgravity on human skeletal muscle architecture and function. J Gravit Physiol 9: P153-154

    Google Scholar 

  • Riley DA, Bain JL, Thompson JL et al. (2000) Decreased thin filament density and length in human atrophic soleus muscle fibers after spaceflight. J Appl Physiol 88: 567-572

    Google Scholar 

  • Riley DA, Ellis S, Giometti CS et al. (1992) Muscle sarcomere lesions and thrombosis after spaceflight and suspension unloading. J Appl Physiol 73: 33S-43S

    Google Scholar 

  • Riley DA, Thompson JL, Krippendorf BBet al. (1995) Review of spaceflight and hindlimb suspension unloading induced sarcomere damage and repair. Basic Appl Myol 5: 139-145

    Google Scholar 

  • Rittweger J, Frost HM, Schiessl H et al. (2005) Muscle atrophy and bone loss after 90 days’ bed rest and the effects of flywheel resistive exercise and pamidronate: results from the LTBR study. Bone 36: 1019-1029

    Google Scholar 

  • Roubenoff R (2001) Origins and clinical relevance of sarcopenia. Can J Appl Physiol 26: 78-89

    Google Scholar 

  • Roy RR, Bello MA, Bouissou Pet al. (1987) Size and metabolic properties of fibers in rat fast-twitch muscles after hindlimb suspension. J Appl Physiol 62: 2348-2357

    Google Scholar 

  • Rudnick J, Puttmann B, Tesch PA et al. (2004) Differential expression of nitric oxide synthases (NOS 1-3) in human skeletal muscle following exercise countermeasure during 12 weeks of bed rest. Faseb J 18: 1228-1230

    Google Scholar 

  • Schneider SM, Watenpaugh DE, Lee SM et al. (2002) Lower-body negative-pressure exercise and bed-rest-mediated orthostatic intolerance. Med Sci Sports Exerc 34: 1446-1453

    Google Scholar 

  • Stein T, Schluter M, Galante A et al. (2002) Energy metabolism pathways in rat muscle under conditions of simulated microgravity. J Nutr Biochem 13: 471

    MATH  Google Scholar 

  • Stein TP, Leskiw MJ, Schluter MDet al. (1999) Protein kinetics during and after long-duration spaceflight on MIR. Am J Physiol 276: E1014-1021

    Google Scholar 

  • Suzuki Y, Kashihara H, Takenaka K et al. (1994) Effects of daily mild supine exercise on physical performance after 20 days bed rest in young persons. Acta Astronautica 33: 101-111

    Google Scholar 

  • Talmadge RJ (2000) Myosin heavy chain isoform expression following reduced neuromuscular activity: potential regulatory mechanisms. Muscle Nerve 23: 661-679

    Google Scholar 

  • Talmadge RJ, Roy RR, Edgerton VR (1999) Persistence of hybrid fibers in rat soleus after spinal cord transection. Anat Rec 255: 188-201

    Google Scholar 

  • Templeton GH, Padalino M, Manton J et al. (1984) Influence of suspension hypokinesia on rat soleus muscle. J Appl Physiol 56: 278-286

    Google Scholar 

  • Tesch PA, Berg HE (1997) Resistance training in space. Int J Sports Med 18 Suppl 4: S322-324

    Google Scholar 

  • Tesch PA, Trieschmann JT, Ekberg A (2004) Hypertrophy of chronically unloaded muscle subjected to resistance exercise. J Appl Physiol 96: 1451-1458

    Google Scholar 

  • Thomason DB, Biggs RB, Booth FW (1989) Protein metabolism and beta-myosin heavy-chain mRNA in unweighted soleus muscle. Am J Physiol 257: R300-305

    Google Scholar 

  • Thomason DB, Booth FW (1990) Atrophy of the soleus muscle by hindlimb unweighting. J Appl Physiol 68: 1-12

    Google Scholar 

  • Tischler ME, Henriksen EJ, Munoz KA et al. (1993) Spaceflight on STS-48 and earth-based unweighting produce similar effects on skeletal muscle of young rats. J Appl Physiol 74: 2161-2165

    Google Scholar 

  • Trappe S, Trappe T, Gallagher P et al. (2004) Human single muscle fiber function with 84 day bed-rest and resistance exercise. J Physiol 557: 501-513

    Google Scholar 

  • Vandenburgh H, Chromiak J, Shansky Jet al. (1999) Space travel directly induces skeletal muscle atrophy. Faseb J 13: 1031-1038

    Google Scholar 

  • Vijayan K, Thompson JL, Norenberg KMet al. (2001) Fiber-type susceptibility to eccentric contraction-induced damage of hindlimb-unloaded rat AL muscles. J Appl Physiol 90: 770-776

    Google Scholar 

  • Vijayan K, Thompson JL, Riley DA (1998) Sarcomere lesion damage occurs mainly in slow fibers of reloaded rat adductor longus muscles. J Appl Physiol 85: 1017-1023

    Google Scholar 

  • Widrick JJ, Knuth ST, Norenberg KM et al. (1999) Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibers. J Physiol 516: 915-930

    Google Scholar 

  • Widrick JJ, Trappe SW, Romatowski JG et al. (2002) Unilateral lower limb suspension does not mimic bed rest or spaceflight effects on human muscle fiber function. J Appl Physiol 93: 354-360

    Google Scholar 

  • Yamashita-Goto K, Okuyama R, Honda M et al. (2001) Maximal and submaximal forces of slow fibers in human soleus after bed rest. J Appl Physiol 91: 417-424

    Google Scholar 

  • Yoshida N, Sairyo K, Sasa T et al. (2003) Electrical stimulation prevents deterioration of the oxidative capacity of disuse-atrophied muscles in rats. Aviat Space Environ Med 74: 207-211

    Google Scholar 

  • Zange J, Muller K, Gerzer Ret al. (1996) Nongenomic effects of aldosterone on phosphocreatine levels in human calf muscle during recovery from exercise. J Clin Endocrinol Metab 81: 4296-4300

    Google Scholar 

  • Zange J, Muller K, Schuber M et al. (1997) Changes in calf muscle performance, energy metabolism, and muscle volume caused by long-term stay on space station MIR. Int J Sports Med 18 Suppl 4: S308-309

    Google Scholar 

  • Zhang LF, Sun B, Cao XS et al. (2003) Effectiveness of intermittent -Gx gravitation in preventing deconditioning due to simulated microgravity. J Appl Physiol 95: 207-218

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Narici, M., Zange, J., Di Prampero, P. (2007). Physiological Targets of Artificial Gravity: The Neuromuscular System. In: Clément, G., Bukley, A. (eds) Artificial Gravity. The Space Technology Library, vol 20. Springer, New York, NY. https://doi.org/10.1007/0-387-70714-X_6

Download citation

  • DOI: https://doi.org/10.1007/0-387-70714-X_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-70712-9

  • Online ISBN: 978-0-387-70714-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics