Skip to main content

Physiological Targets of Artificial Gravity: The Sensory-Motor System

  • Chapter
Book cover Artificial Gravity

Part of the book series: The Space Technology Library ((SPTL,volume 20))

  • 1552 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albery WB, Martin ET (1994) Development of space motion sickness in a ground-based human centrifuge for human factors research. Proceedings of the 45th Congress of the International Astronautical Federation, Jerusalem, October 9-14, 1994

    Google Scholar 

  • Asch SE, Witkin HA (1948) Studies in space orientation. I. Perception of the upright with displaced visual fields. J Exp Psych 38: 325-337

    Article  Google Scholar 

  • Augurelle AS, Thonnard JL, White O et al. (2003) The effects of a change in gravity on the dynamics of prehension. Exp Brain Res 148: 533-540

    Google Scholar 

  • Benson AJ (1988) Spatial disorientation: Common illusions. In: Aviation Medicine. Ernsting J, King P (eds) Butterworths, London, Chapter 21: pp 297-317

    Google Scholar 

  • Baumgarten von RJ (1986) European experiments in the Spacelab mission 1. Overview. Exp Brain Res 64: 239-246

    Article  Google Scholar 

  • Benson AJ (1977) Possible mechanisms of motion and space sickness. In: Life Science Research in Space. Proceeding of Cologne/Porz-Wahn ESA Space Life Sciences Symposium, ESA Noordwijk, ESA SP-130

    Google Scholar 

  • Benson AJ, Guedry FE, Parker DE et al. (1997) Microgravity vestibular investigations: perception of self-orientation and self-motion. J Vestib Res 7: 453-457

    Article  Google Scholar 

  • Benson AJ, Viéville Th. (1986) European vestibular experiments on the Spacelab-1 Mission: 6. Yaw axis vestibulo-ocular reflex. Exp Brain Res 64: 279-283

    Google Scholar 

  • Bles W and van Raaij JL (1988) Pre- and postflight postural control of the D1 Spacelab mission astronauts examined with a tilting room. Report TNO-IZF 1988-25

    Google Scholar 

  • Bles W, Graaf B de (1993) Postural consequences of long duration centrifugation. J Vestib Res 3: 87-95

    Google Scholar 

  • Bles W, De Graaf B, Bos JE et al. (1997) A sustained hyper-G load as a tool to simulate space sickness. J Gravit Phys 4: 1-4

    Google Scholar 

  • Bles W, Bos JE, Graaf B de, Groen E, Wertheim AH (1998) Motion sickness: Only one provocative conflict? Brain Res Bull 47: 481-487

    Article  Google Scholar 

  • Bloomberg JJ, Layne CS, McDonald PV et al. (1999) Effects of space flight on locomotor control. In: Extended Duration Orbiter Medical Project Final Report 1989–1995. Sawin CF, Taylor GR, Smith WL (eds) NASA, Washington DC, NASA SP-534, pp 551–557

    Google Scholar 

  • Bock O, Howard IP, Money KE et al. (1992) Accuracy of aimed arm movements in changed gravity. Aviat Space Environ Med 63: 994-998

    Google Scholar 

  • Bock O, Fowler B, Comfort D (2001) Human sensorimotor coordination during spaceflight: An analysis of pointing and tracking responses during the Neurolab Space Shuttle mission. Aviat Space Environ Med 72: 877-883

    Google Scholar 

  • Bos JE, Bles W (2002) Theoretical considerations on canal-otolith interaction and an observer model. Biol Cyber 86: 191-207

    Article  MATH  Google Scholar 

  • Bos JE, Bles W, Graaf B de (2002) Eye movements to yaw, pitch, and roll about vertical and horizontal axes: Adaptation and motion sickness. Aviat Space Environ Med 73: 436-444

    Google Scholar 

  • Brown EL, Hecht H, Young LR (2003) Sensorimotor aspects of high-speed artificial gravity: I. Sensory conflict in vestibular adaptation. J Vestib Res 12: 271-282

    Google Scholar 

  • Clarke AH, Teiwes W, Scherer H (1992) Variation of gravitoinertial force and its influence on ocular torsion and caloric nystagmus. Ann NY Acad Sci 656: 820-822

    Article  Google Scholar 

  • Clarke AH, Teiwes W, Scherer H (1993) Evaluation of the three-dimensional VOR in weightlessness. J Vest Res 3: 207-218

    Google Scholar 

  • Clarke AH (1998) Vestibulo-oculomotor research and measurement technology for the space station era. Brain Res Rev 28: 173-184

    Article  Google Scholar 

  • Clarke AH, Grigull J, Müller R et al. (2000) The three-dimensional vestibulo-ocular reflex during prolonged microgravity. Exp Brain Res 134: 322-334

    Article  Google Scholar 

  • Clarke AH, Ditterich J, Druen K et al. (2002) Using high frame rate CMOS sensors for three-dimensional eye tracking. Behav Res Methods Instrum Comput 34: 549-560

    Google Scholar 

  • Clarke AH (2006) Ocular torsion response to active head-roll movement under one-g and zero-g conditions. J Vestib Res, in press

    Google Scholar 

  • Clément G, Gurfinkel VS, Lestienne F et al. (1985) Changes of posture during transient perturbations in microgravity. Aviat Space Environ Med 56: 666-671

    Google Scholar 

  • Clément G, Berthoz A, Lestienne F (1987) Adaptive changes in perception of body orientation and mental image rotation in microgravity. Aviat Space Environ Med 58: A159-A163

    Google Scholar 

  • Clément G, Reschke MF (1996) Neurosensory and sensory-motor functions. In: Biological and Medical Research in Space: An Overview of Life Sciences Research in Microgravity. Moore D, Bie P, Oser H (eds) Springer-Verlag, Heidelberg, Chapter 4, pp 178-258

    Google Scholar 

  • Clément G (1998) Alteration of eye movements and motion perception in microgravity. Brain Res Rev 28: 161-172

    Article  Google Scholar 

  • Clément G, Moore ST, Raphan T et al. (2001) Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight. Exp Brain Res 138: 410-418

    Article  Google Scholar 

  • Clément G, Deguine O, Parant M et al. (2001) Effects of cosmonaut vestibular training on vestibular function prior to spaceflight. Eur J App Physiol 85: 539-545

    Google Scholar 

  • Clément G, Deguine O, Bourg M et al. (2006) Effects of vestibular training on motion sickness, nystagmus, and subjective vertical. J Vestib Res, in press

    Google Scholar 

  • Clément G, Denise P, Reschke MF et al. (2006) Human ocular counter-rotation and roll tilt perception during off-vertical axis rotation after spaceflight. J Vestib Res, in press

    Google Scholar 

  • Clement J (1982) Students’ preconceptions in introductory mechanics. Am J Phys 50: 66-71

    Article  Google Scholar 

  • Cheung B, Hofer K (2005) Desensitization to strong vestibular stimuli improves tolerance to simulated aircraft motion. Aviat Space Environ Med 76: 1099-1104

    Google Scholar 

  • Dai M, Raphan T, Cohen B (1991) Spatial orientation of the vestibular system: dependence of optokinetic after nystagmus (OKAN) on gravity. J Neurophysiol 66: 1422-1439

    Google Scholar 

  • Dai M, Kunin M, Raphan T et al. (2003) The relation of motion sickness to the spatial-temporal properties of velocity storage. Exp Brain Res 151: 173-189

    Article  Google Scholar 

  • Dai M, Raphan T, Cohen B (2006) Effects of baclofen on the angular vestibulo-ocular reflex. Exp Brain Res 171: 262-271

    Article  Google Scholar 

  • Diamond SG, Markham CH (1991) Prediction of space motion sickness susceptibility by disconjugate eye torsion in parabolic flight. Aviat Space Environ Med 59: 1158-1162

    Google Scholar 

  • Diamond SG, Markham CH (1998) The effect of space missions on gravity-responsive torsional eye movements. J Vestib Res 3: 217-231

    Article  Google Scholar 

  • DiZio P, Lackner JR (1995) Motor adaptation to Coriolis force perturbations of reaching movements: Endpoint but not trajectory adaptation transfers to the non-exposed arm. J Neurophysiol 74: 1787-1792

    Google Scholar 

  • van Erp JB, van Veen HA (2006) Touch down: The effect of artificial touch cues on orientation in microgravity. Neurosci Lett 404: 78-82

    Article  Google Scholar 

  • Evans JM, Stenger MB, Moore FB et al. (2004) Centrifuge training increases presyncopal orthostatic tolerance in ambulatory men. Aviat Space Environ Med 75: 850-858

    Google Scholar 

  • Gillingham KK, Wolfe JW (1985). Spatial orientation in flight. In: Fundamentals of Aerospace Medicine. DeHart RL (ed) Lea & Febiger, Philadelphia, pp 299-381

    Google Scholar 

  • Gizzi M, Raphan T, Rudolph S et al. (1994) Orientation of human optokinetic nystagmus to gravity: A model-based approach. Exp Brain Res 99: 347-360

    Article  Google Scholar 

  • Glasauer S, Mittelstaedt H (1998) Perception of spatial orientation in microgravity. Brain Res Rev 28: 185-193

    Article  Google Scholar 

  • Godwin R (ed) (1999) Apollo 12. The NASA Mission Reports. Apogee Books, Burlington, Ontario, Canada

    Google Scholar 

  • Graybiel A (ed) (1965) The Role of the Vestibular Organs in the Exploration of Space. NASA, Washington DC, NASA SP-77

    Google Scholar 

  • Graybiel A (ed) (1966) Second Symposium on The Role of the Vestibular Organs in the Exploration of Space. NASA, Washington DC, NASA SP-115

    Google Scholar 

  • Graybiel A (ed) (1968) Third Symposium on The Role of the Vestibular Organs in the Exploration of Space. NASA, Washington DC, NASA SP-152

    Google Scholar 

  • Graybiel A (ed) (1970) Fourth Symposium on The Role of the Vestibular Organs in the Exploration of Space. NASA, Washington DC, NASA SP-187,

    Google Scholar 

  • Graybiel A (ed) (1973) Fifth Symposium on The Role of the Vestibular Organs in the Exploration of Space. NASA Washington DC, NASA SP-314

    Google Scholar 

  • Graybiel A, Fregley AR (1965) A new quantitative ataxia test battery. In: The Role of the Vestibular Organs in the Exploration of Space. Graybiel A (ed) NASA, Washington DC, NASA SP-77, pp 99-120

    Google Scholar 

  • Graybiel A, Kennedy RS, Guedry FE et al. (1965) The effects of exposure to a rotating environment (10 rpm) on four aviators for a period of 12 days. In: The Role of the Vestibular Organs in the Exploration of Space. NASA, Washington DC, NASA SP-77, pp 295-338

    Google Scholar 

  • Graybiel A, Knepton JC (1972) Direction-specific adaptation effects acquired in a slow rotating room. Aerospace Med 43: 1179-1189

    Google Scholar 

  • Griffin, MJ, Newman MM (2004) Visual field effects on motion sickness in cars. Aviat Space Environ Med 75: 739-748

    Google Scholar 

  • Groen E (1997) Orientation to Gravity: Oculomotor and Perceptual Responses in Man. Ph.D. Thesis, University of Utrecht

    Google Scholar 

  • Groen E, Graaf B de, Bles W et al. (1996) Ocular torsion before and after 1 hour centrifugation. Brain Res Bull 40: 5-6

    Google Scholar 

  • Groen EL, Jenkin HJ, Howard IP (2002) Perception of self-tilt in a true and illusory vertical plane. Perception 31: 1477-1490

    Article  Google Scholar 

  • Guedry FR, Kennedy RS, Harris DS et al. (1964) Human performance during two weeks in a room rotating at three rpm. Aerospace Med 35: 1071-1082

    Google Scholar 

  • Gurfinkel VS, Lestienne F, Levik YS et al. (1993) Egocentric references and human spatial orientation in microgravity. II. Body-centred coordinates in the task of drawing ellipses with prescribed orientation. Exp Brain Res 95: 343-348

    Article  Google Scholar 

  • Harm DL, Parker DE (1993) Perceived self-orientation and self-motion in microgravity, after landing and during preflight adaptation training. J Vestib Res 3: 297-305

    Google Scholar 

  • Hecht H, Kavelaars J, Cheung CC et al. (2001) Orientation illusions and heart rate changes during short-radius centrifugation. J Vestib Res 11: 115-127

    Google Scholar 

  • Hecht H (2001) The Science Fiction of Artificial Gravity. Presentation at the ICASE/LaRC/USRA Workshop on Revolutionary Aerospace Systems for Human/Robotic Exploration of the Solar System, Houston. Retrieved on 31 July 2006 from URL: http://www.icase.edu/workshops/hress01/presentations/hecht.pdf

    Google Scholar 

  • Hecht H, Brown EL, Young LR (2002) Adapting to artificial gravity (AG) at high rotational speeds. J Gravit Physiol 9: 1-5

    Google Scholar 

  • Held R, Dichgans J, Bauer J (1975) Characteristics of moving visual scenes influencing spatial orientation. Vision Res 15: 357-365

    Article  Google Scholar 

  • Highstein SM, Fay RR, Popper AN (eds) (2004) The Vestibular System. Springer, New York

    Google Scholar 

  • Howard IP, Childerson L (1994) The contribution of motion, the visual frame, and visual polarity to sensations of body tilt. Perception 23: 753-762

    Article  Google Scholar 

  • Howard IP, Groen EL, Jenkin H (1997) Visually induced self-inversion and levitation. Invest Ophtalm Vis Sci 40: S801

    Google Scholar 

  • Howard IP, Hu G (2001) Visually induced reorientation illusions. Perception 30: 583-600

    Article  Google Scholar 

  • Iwasaki K, Sasaki T, Hirayanaga K et al. (2001) Usefulness of daily +2Gz load as a countermeasure against physiological problems during weightlessness. Acta Astronautica 49: 227-235

    Article  Google Scholar 

  • Iwase S, Fu Q, Narita K et al. (2002) Effects of graded load of artificial gravity on cardiovascular functions in humans. Environ Med 46: 29-32

    Google Scholar 

  • Kenyon RV, Young LR (1986) M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 5. Postural responses following exposure to weightlessness. Exp Brain Res 64: 335-346

    Article  Google Scholar 

  • Kozlovskaya IB, Aslanova IF, Grigorieva LS et al. (1982) Experimental analysis of motor effects of weightlessness. Physiologist 25: 49-52

    Google Scholar 

  • Kozlovskaya IB, Aslanova IF, Barmin VA et al. (1983) The nature and characteristics of a gravitational ataxia. Physiologist 26: S108-S109

    Google Scholar 

  • Lackner JR (1992) Multimodal and motor influences on orientation: implications for adapting to weightless and virtual environments. Perception 21: 803-812

    Article  Google Scholar 

  • Lackner JR, DiZio P (1994) Rapid adaptation to Coriolis force perturbations of arm trajectory. J Neurophysiol 72: 299-313

    Google Scholar 

  • Lackner JR, DiZio P (1997) Sensory motor coordination in an artificial gravity environment. J Gravit Physiol 4: 9-12

    Google Scholar 

  • Lackner JR, DiZio P (1998a) Spatial orientation as a component of presence: insights gained from nonterrestrial environments. Presence 7: 108-115

    Article  Google Scholar 

  • Lackner JR, DiZio P (1998b) Gravitational force background level affects adaptation to Coriolis force perturbations of reaching movements. J Neurophysiol 80: 546-553

    Google Scholar 

  • Lackner JR, DiZio P (2000) Human orientation and movement control in weightless and artificial gravity environments. Exp Brain Res 130: 2-26

    Article  Google Scholar 

  • Lathan C, Wang Z, Clément G (2000) Changes in the vertical size of a three-dimensional object drawn in weightlessness by astronauts. Neurosci Lett 295: 37-40

    Article  Google Scholar 

  • Lichtenberg BK (1988) Vestibular factors influencing the biomedical support of humans in space. Acta Astronautica 17: 203-206

    Article  Google Scholar 

  • Linenger JM (2001) Off the Planet: Surviving Five Perilous Months Aboard the Space Station Mir. McGraw-Hill, New York

    Google Scholar 

  • Marquez JJ, Oman CH, Liu AM (2004) You-are-here maps for International Space Station: Approach and Guidelines. SAE International 2004-01-2584. Retrieved on 26 July 2006 from URL:

    Google Scholar 

  • http://stuff.mit.edu/people/amliu/Papers/Marquez-YAH-2004-01-2584.pdf

    Google Scholar 

  • Mast FW, Newby NJ, Young LR (2003) Sensorimotor aspects of high-speed artificial gravity: II. The effect of head position on illusory self-motion. J Vestib Res 12: 282-289

    Google Scholar 

  • McCloskey M, Caramazza A, Green B (1980) Curvilinear motion in the absence of external forces: naive beliefs about the motion of objects. Science 210: 1139-1141

    Article  Google Scholar 

  • McCloskey M, Washburn A, Felch L (1983) Intuitive physics: The straight-down belief and its origin. J Exp Psychol Learn Mem Cogn 9: 636-649.

    Article  Google Scholar 

  • McCluskey R, Clark J, Stepaniak P (2001) Correlation of Space Shuttle landing performance with cardiovascular and neurological dysfunction resulting from space flight. NASA Bioastronautics Roadmap. Retrieved 26 July 2006 from URL: http://bioastroroadmap.nasa.gov/User/risk.jsp?showData=13

    Google Scholar 

  • McIntyre J, Zago M, Berthoz A, Lacquaniti R (2001) Does the brain model Newton’s laws? Nature Neurosci 4: 693-695

    Article  Google Scholar 

  • Merfeld DM, Young LR, Oman CM et al. (1993) A multidimensional model of the effect of gravity on the spatial orientation of the monkey. J Vestib Res 3: 141-161

    Google Scholar 

  • Merfeld DM (1996) Effect of space flight on ability to sense and control roll tilt: human neurovestibular studies on SLS-2. J Appl Physiol 81: 50–57

    Google Scholar 

  • Merfeld DM, Jock RI, Christie SM et al. (1994) Perceptual and eye movement responses elicited by linear acceleration following spaceflight. Aviat Space Environ Med 65: 1015-1024

    Google Scholar 

  • Merfeld DM, Teiwes W, Clarke AH et al. (1996) The dynamic contribution of the otolith organs to human ocular torsion. Exp Brain Res 110: 315-321

    Article  Google Scholar 

  • Merfeld DM, Zupan L, Peterka RJ (1999) Humans use internal models to estimate gravity and linear acceleration. Nature 398: 615-618

    Article  Google Scholar 

  • Mittelstaedt H (1983) A new solution to the problem of the subjective vertical. Naturwissenschaften 70: 272-281

    Article  Google Scholar 

  • Moore S, Clément G, Raphan T, Cohen B (2001) Ocular counterrolling induced by centrifugation during orbital space flight. Exp Brain Res 137: 323-335

    Article  Google Scholar 

  • Moore S, Cohen B, Raphan T et al. (2005) Spatial orientation of optokinetic nystagmus and ocular pursuit during orbital space flight. Exp Brain Res 160: 38-59

    Article  Google Scholar 

  • Mueller C, Kornilova L, Wiest G et al. (1994) Visually induced vertical self-motion sensation is altered in microgravity adaptation. J Vestib Res 4: 161-167

    Google Scholar 

  • Nooij SAE, Bos JE, Ockels WJ (2004) Investigation of vestibular adaptation to changing gravity levels on earth. J Vestib Res 14: 133 (abstract)

    Google Scholar 

  • Nooij SAE, Bos JE (2006) Sustained hypergravity to simulate SAS: effect of G-load and duration. In: Proceedings of the 7th Symposium on the Role of the Vestibular Organs in Space Exploration. ESTEC, Noordwijk, The Netherlands, June 6-9, 2006

    Google Scholar 

  • Ockels WJ, Furrer R, Messerschmid E (1990) Space sickness on Earth. Exp Brain Res 79: 661-663

    Article  Google Scholar 

  • Oman CM (1982) A heuristic mathematical model for the dynamics of sensory conflict and motion sickness. Acta Otolaryngol (Suppl) 392: 1-44

    Google Scholar 

  • Oman CM, Young LR, Watt DGD, Money KE, Lichtenberg BK, Kenyon RV, Arrott AP (1988) MIT/Canadian Spacelab experiments on vestibular adaptation and space motion sickness. In: Basic and Applied Aspects of Vestibular Function. Hwang JC, Daunton NG, Wilson VJ (eds) University Press, Hong Kong

    Google Scholar 

  • Oman CM, Lichtenberg BK, Money KE, McCoy RK (1986) M.I.T./Canadian vestibular experiments on the Spacelab-1 Mission: 4. Space motion sickness: symptoms, stimuli, and predictability. Exp Brain Res 64: 316-334

    Article  Google Scholar 

  • Oman CM, Balkwill MD (1993) Horizontal angular VOR, nystagmus dumping, and sensation duration in Spacelab SLS-1 crewmembers. J Vestib Res 3: 315-330

    Google Scholar 

  • Oman CM, Kulbaski M (1988) Spaceflight affects the 1-g postrotatory vestibulo–ocular reflex. Adv Otorhinolaryngol 42: 5-8

    Google Scholar 

  • Paloski WH, Black FO, Reschke MF et al. (1993) Vestibular ataxia following shuttle flights: effect of transient microgravity on otolith-mediated sensorimotor control of posture. Am J Otol 14: 9-17

    Google Scholar 

  • Paloski WH, Reschke MF, Black FO (1999) Recovery of postural equilibrium control following space flight. In: Extended Duration Orbiter Medical Project Final Report 1989–1995. Sawin CF, Taylor GR, Smith WL (eds) NASA, Washington, DC, NASA SP-534, pp 411-416

    Google Scholar 

  • Parker DE, Reschke MF, Arrott AP et al. (1985) Otolith tilt translation reinterpretation following prolonged weightlessness: Implications for preflight training. Aviat Environ Space Med 56: 601-607

    Google Scholar 

  • Previc FH, Ercoline WR (eds) (2004) Spatial disorientation in aviation. Progress in Astronautics and Aeronautics. Vol 23, American Institute of Aeronautics and Astronautics Inc, Reston, Virginia

    Google Scholar 

  • Pozzo T, Papaxanthis C, Stapley P et al. (1998) The sensorimotor and cognitive integration of gravity. Brain Res Review 28: 92-101

    Article  Google Scholar 

  • Raphan T, Matsuo V, Cohen B (1979) Velocity storage in the vestibulo-ocular reflex arc (VOR). Exp Brain Res 35: 229-248

    Article  Google Scholar 

  • Reason JT, Brand JJ (1975) Motion Sickness. Academic Press, London

    Google Scholar 

  • Reason JT (1978) Motion sickness adaptation: A neural mismatch model. J Royal Soc Med 71: 819-829

    Google Scholar 

  • Reason JT, Graybiel A (1970) Progressive adaptation to Coriolis accelerations associated with 1 rpm increments in the velocity of the slow rotating room. Aerospace Med 41: 73-79

    Google Scholar 

  • Reschke MF, Anderson DJ, Homick JL (1986) Vestibulo-spinal response modification as determined with the H-reflex during the Spacelab-1 flight. Exp Brain Res 64: 335-346

    Article  Google Scholar 

  • Reschke M, Somers JT, Leigh RJ et al. (2004) Sensorimotor recovery following spaceflight may be due to frequent square-wave saccadic intrusions. Aviat Space Environ Med 75: 700-704

    Google Scholar 

  • Roberts TDM (1968) Labyrinthine control of the postural muscles. In: Third Symposium on the Role of the Vestibular Organs in the Exploration of Space Graybiel A (ed) NASA, Washington DC, NASA SP-152, pp 149-168

    Google Scholar 

  • Ross HE, Brodie EE, Benson AJ (1986) Mass discrimination in weightlessness and readaptation to Earth’s gravity. Exp Brain Res 64: 358-366

    Article  Google Scholar 

  • Ross MD (1992) A study of the effects of space travel on mammalian gravity receptors. Space Life Sciences-1 180-Day Experimental Reports. NASA, Washington DC

    Google Scholar 

  • Ross MD (1993) Morphological changes in rats vestibular system following weightlessness. J Vestib Res 3: 241-251

    Google Scholar 

  • Ross MD (1994) A spaceflight study of synaptic plasticity in adult rat vestibular maculas. Acta Otolaryngol Suppl 516: 1-14

    Google Scholar 

  • Rupert A (2000) Tactile situation awareness system: Proprioceptive prostheses for sensory deficiencies. Aviat Space Environ Med 71: A92-A99

    Google Scholar 

  • Stone RW (1973) An overview of artificial gravity. In: Fifth Symposium on the Role of the Vestibular Organs in Space Exploration. NASA, Washington DC, NASA SP-314, pp 23-33

    Google Scholar 

  • Vernikos J (1996) Human physiology in space. Bioessays 18: 1029-1037

    Article  Google Scholar 

  • Watt DGD (1997) Pointing at memorized targets during prolonged microgravity. Aviat Space Environ Med 68: 99-103

    Google Scholar 

  • White O, McIntyre J, Augurelle AS et al. (2005) Do novel gravitational environments alter the grip-force/load-force coupling at the fingertips? Exp Brain Res 163: 324-334

    Article  Google Scholar 

  • Young LR, Shelhamer M (1990) Microgravity enhances the relative contributions of visually-induced motion sensation. Aviat Space Environ Med 61: 225-230

    Google Scholar 

  • Young LR (2000) Vestibular reactions to spaceflight: Human factors issues. Aviat Space Environ Med 71: A100-A104

    Google Scholar 

  • Young LR, Hecht H, Lyne L et al. (2001) Artificial gravity: Head movements during short-radius centrifugation. Acta Astronautica 49: 215-226

    Article  Google Scholar 

  • Young LR (2006) Neurovestibular aspects of short-radius artificial gravity: Toward a comprehensive countermeasure. NSBRI Sensorimotor Adaptation Project Technical Summary. Retrieved 22 May 2006 from URL: http://www.nsbri.org/Research/Projects/viewsummary.epl?pid=184

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Groen, E., Clarke, A., Bles, W., Wuyts, F., Paloski, W., Clément, G. (2007). Physiological Targets of Artificial Gravity: The Sensory-Motor System. In: Clément, G., Bukley, A. (eds) Artificial Gravity. The Space Technology Library, vol 20. Springer, New York, NY. https://doi.org/10.1007/0-387-70714-X_4

Download citation

  • DOI: https://doi.org/10.1007/0-387-70714-X_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-70712-9

  • Online ISBN: 978-0-387-70714-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics