Skip to main content

History of Artificial Gravity

  • Chapter
Artificial Gravity

Part of the book series: The Space Technology Library ((SPTL,volume 20))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamovich BA, Ilyyin YA, Shipov AA et al. (1980) Scientific equipment on living environment of animals in experiments on the Kosmos-936 biosatellite. Kosm Biol Aviakosm Med 14: 18-22

    Google Scholar 

  • Antonutto G, Linnarsson D, Di Prampero PE (1993) On-Earth evaluation of neurovestibular tolerance to centrifuge simulated artificial gravity in humans Physiologist 36: S85-S87

    Google Scholar 

  • Arrott AP, Young LR, Merfeld DM (1990) Perception of linear acceleration in weightlessness. Aviat Space Environ Med 61: 319–326

    Google Scholar 

  • Benson AJ, Kass JR, Vogel H (1986) European vestibular experiments on the Spacelab-1 mission: 4. Thresholds of perception of whole-body linear oscillation. Exp Brain Res 64: 264-271

    Google Scholar 

  • Benson AJ, Guedry FE, Parker DE et al. (1997) Microgravity vestibular investigations: Perception of self-orientation and self-motion. J Vestib Res 7: 453–457

    Article  Google Scholar 

  • Berry CA (1973) Findings on American astronauts bearing on the issue of artificial gravity for future manned space vehicles. In: Fifth Symposium on the Role of the Vestibular Organs in Space Exploration. NASA, Washington, DC, NASA SP-314, pp 15-22

    Google Scholar 

  • Bizony P (2000) 2001: Filming the Future. Fourth Edition. Aurum Press, London

    Google Scholar 

  • Buckey JC, Lane LD et al. (1996) Orthostatic intolerance after spaceflight. J Appl Physiol 81: 7-18

    Google Scholar 

  • Burton RR, Meeker LJ (1992) Physiologic validation of a short-arm centrifuge for space applications. Aviat Space Environ Med 63: 476-481

    Google Scholar 

  • Caiozzo VJ, Rose-Gottron C, Baldwin KM et al. (2004) Hemodynamic and metabolic responses to hypergravity on a human-powered centrifuge. Aviat Space Environ Med 75: 101-108

    Google Scholar 

  • Clarke AC (1948) The Sentinel. In: Expedition to Earth. Harcourt, Brace and World, New York

    Google Scholar 

  • Clarke AC (1968) 2001: A Space Odyssey. New American Library, New York

    Google Scholar 

  • Clarke AC (1974) Rendez-Vous with Rama. Ballantine Books, New York

    Google Scholar 

  • ClĂ©ment G, Moore S, Raphan T et al. (2001) Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight. Exp Brain Res 138: 410–418

    Article  Google Scholar 

  • ClĂ©ment G, Pavy-Le Traon A (2004) Centrifugation as a countermeasure during actual and simulated microgravity: A review. Eur J Appl Physiol 92: 235-248

    Article  Google Scholar 

  • ClĂ©ment G (2005) Fundamentals of Space Medicine. Microcosm Press, El Segundo and Springer, Dordrecht

    Google Scholar 

  • ClĂ©ment G, Slenzka K (2006) Fundamentals of Space Biology: Research on Cells, Animals, and Plants in Space. Springer, New York

    Google Scholar 

  • Cohn J, DiZio P, Lackner J (2000) Reaching during visual rotation: context specific compensation for expected Coriolis forces. J Neurophysiol 83: 3230-3240

    Google Scholar 

  • Cole DM Cox DW (1964) Islands in Space. Chilton Books, New York

    Google Scholar 

  • Conrad N, Klausner HA (2005) Rocketman: Astronaut Pete Conrad’s Incredible Ride to the Moon and Beyond. New American Library, New York

    Google Scholar 

  • Di Prampero PE (1994) The twin bikes system for artificial gravity in space. J Gravit Physiol 1: 12-14

    Google Scholar 

  • Diamandis PH (1997) Countermeasure and artificial gravity. In: Fundamentals of Space Life Sciences. Churchill SE (ed) Krieger, Malabar, FL, pp 159-175

    Google Scholar 

  • Faget MA, Olling EH (1968) Orbital space stations with artificial gravity. In: Fifth Symposium on the Role of the Vestibular Organs in Space Exploration. NASA, Washington, DC, NASA SP-314, spp 7-16

    Google Scholar 

  • Godwin R (ed) (1999) Apollo 11. The NASA Mission Reports. Apogee Books, Burlington, Ontario, Canada

    Google Scholar 

  • Godwin R (ed) (1999) Apollo 12. The NASA Mission Reports. Apogee Books, Burlington, Ontario, Canada

    Google Scholar 

  • Gray H (1971) Rotating Vivarium concept for Earth-like habitation in space. Aerospace Med 42: 899-892

    Google Scholar 

  • Graybiel A, Kennedy RS, Knoblock EC et al. (1965) The effects of exposure to a rotating environment (10 rpm) on four aviators for a period of 12 days. Aerospace Med 38: 733-754

    Google Scholar 

  • Graybiel A, Dean FR, Colehour JK (1969) Prevention of overt motion sickness by incremental exposure to otherwise highly stressful Coriolis accelerations. Aerospace Med 40: 142-148

    Google Scholar 

  • Graybiel A, Knepton JC (1972) Direction-specific adaptation effects acquired in a slow rotating room. Aerospace Med 43: 1179-1189

    Google Scholar 

  • Greenleaf JE, Gundo DP, Watenpaugh DE et al. (1996) Cycle-powered short radius (1.9 m) centrifuge: Exercise vs passive acceleration. J Gravit Physiol 3: 61-62

    Google Scholar 

  • Guedry FR, Kennedy RS, Harris DS et al. (1964) Human performance during two weeks in a room rotating at three rpm. Aerospace Med 35: 1071-1082

    Google Scholar 

  • Harford J (1973) Korolev. Wiley, New York

    Google Scholar 

  • Ilyn YA, Parfenov GP (1979) Biological Studies on Kosmos Biosatellites. Nauka, Moscow

    Google Scholar 

  • Iwasaki K, Hirayanagi K, Sasaki T et al. (1998) Effects of repeated long duration +2Gz load on man’s cardiovascular function. Acta Astronautica 42: 175–183

    Article  Google Scholar 

  • Johnson RD, Holbrow C (eds) (1977) Space Settlements: A Design Study. NASA Washington, DC, NASA SP-413

    Google Scholar 

  • Johnston RS, Dietlein LF, Berry CA (eds) (1975) Biomedical Results of Apollo. NASA Washington, DC, NASA SP-368

    Google Scholar 

  • Johnston RS, Dietlein LF (eds) (1977) Biomedical Results from Skylab. NASA Washington, DC, NASA SP-377

    Google Scholar 

  • Katayama K, Sato K, Akima H et al. (2004) Acceleration with exercise during head down bed rest preserves upright exercise responses. Aviat Space Environ Med 75: 1029-1035

    Google Scholar 

  • Kotovskaya AR, Galle RR, Shipov AA (1981) Soviet research on artificial gravity. Kosm Biol Aviakosm Med 2: 72-79

    Google Scholar 

  • Kosmodemyanksy AA (1956) Konstantin Tsiolkovsky: His Life and Works. Foreign Languages Publishing House, Moscow

    Google Scholar 

  • Lackner JR, DiZio P (2000a) Human orientation and movement control in weightless and artificial gravity environments. Exp Brain Res 130: 2-26

    Article  Google Scholar 

  • Lackner JR, DiZio P (2000b) Artificial gravity as a countermeasure in long-duration space flight. J Neurosci Res 62: 169-176

    Article  Google Scholar 

  • Lackner JR, Graybiel A (1982) Rapid perceptual adaptation to high gravitoinertial force levels: evidence for context-specific adaptation. Aviat Space Environ Med 53: 766-769

    Google Scholar 

  • Lange KO, Belleville RE, Clark FC (1975) Selection of artificial gravity by animals during suborbital rocket flights. Aviat Space Environ Med 46: 809-813

    Google Scholar 

  • Loret BJ (1963) Optimization of space vehicle design with respect to artificial gravity. Aerospace Med 34: 430-441

    Google Scholar 

  • Nicogossian A, Leach Huntoon C, Pool SL (1977) Space Physiology and Medicine. 3rd Edition. Lea and Febiger, Philadelphia

    Google Scholar 

  • Noordung H (1928) Das Problem der Befahrung des Weltraums: Der Raketen-Motor. Richard Carl Schmidt & Co, Berlin [English translation: Noordung H (1995) The Problem of Space Travel: The Rocket Motor. Stuhlinger E, Hunley JD, Garland J (eds) US Government Printing Office, Washington, DC, NASA SP-4026]

    Google Scholar 

  • Noordung H (1929) The Problems of Space Flying, translated by Francis M. Currier Science Wonder Stories 1 (July 1929): 170-80, (August 1929): 264-72, and (September 1929): 361-368.

    Google Scholar 

  • O’Neill GK (1974) The colonization of space. Physics Today 27: 32

    Google Scholar 

  • O’Neill GK (1977) The High Frontier. William Morrow, New York

    Google Scholar 

  • Reason JT, Graybiel A (1970) Progressive adaptation to Coriolis accelerations associated with one rpm increments of velocity in the slow-rotation room. Aerospace Med 41: 73-79

    Google Scholar 

  • Romick D (1956) Manned Earth-Satellite Terminal Evolving from Earth-to-Orbit Ferry Rockets (METEOR). Paper presented at the 7th International Astronautical Congress, Rome, September 1956

    Google Scholar 

  • Shea JF (ed) (1992) Straegic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions. NASA Advisory Council & Aerospace Medicine Advisory Committee

    Google Scholar 

  • Shipov AA (1977) Artificial gravity. In: Space Biology and Medicine: Humans in Spaceflight. Nicogossian AE, Mohler SR, Gazenko OG, Grigoriev AI (eds) American Institute of Aeronautics and Astronautics Reston, VA, Vol 3, Book 2, pp 349-363

    Google Scholar 

  • Shulzhenko EB, Vil-Villiams IF, Aleksandrova EA et al. (1979) Prophylactic effects of intermittent acceleration against physiological deconditioning in simulated weightlessness. Life Sci Space Res 17: 187-192

    Google Scholar 

  • Stone RW (1973) An overview of artificial gravity. In: Fifth Symposium on the Role of the Vestibular Organs in Space Exploration. NASA, Washington, DC, NASA SP-314, pp 23-33

    Google Scholar 

  • Tsiolkovsky KE (1960) Beyond Planet Earth. Translated by Kenneth Sayers, Pergamon Press Inc, New York

    Google Scholar 

  • Vernikos J (2004) The G-Connection: Harness Gravity and Reverse Aging. iUniverse, New York

    Google Scholar 

  • Vetrov GS (1998) Sergei Korolev I Evo Delo. Nauka, Moscow

    Google Scholar 

  • Von Braun W (1953) The baby space station: First step in the conquest of space. Collier’s Magazine. 27 June 1953, pp 33-35, 38, 40

    Google Scholar 

  • Wade M (2005) Gemini 11. Encyclopedia Astronautica. Retrieved 10 May 2006 from URL: http://www.astronautix.com/flights/gemini11.htm

    Google Scholar 

  • White WJ, Nyberg WD, White PD et al. (1965) Biomedical Potential of a Centrifuge in an Orbiting Laboratory. Douglas Report SM-48703 and SSD-TDR-64-209-Supplement, July 1995. Douglas Aircraft Co, Santa Monica, CA

    Google Scholar 

  • Yajima K, Iwasaki K, Sasaki T, Miyamoto A, Hirayanagi K (2000) Can daily centrifugation prevent the hematocrit increase elicited by 6-degree, head-down tilt? Pflugers Archives 441: 95–97

    Google Scholar 

  • Young LR (1999) Artificial gravity considerations for a Mars exploration mission. In: Otolith Function in Spatial Orientation and Movement. Hess BJ, Cohen B (eds) Ann NY Acad Sci 871: 367-378

    Google Scholar 

  • Young LR, Hecht H, Lyne LE et al. (2001) Artificial gravity: head movements during short-radius centrifugation. Acta Astronautica 49: 215–226

    Article  Google Scholar 

  • Young LR. (2003) Artificial Gravity. In: Encyclopedia of Space Science and Technology. Mark H (ed) John Wiley & Sons, New York, pp 138-151

    Google Scholar 

  • Yuganov YM, Isakov PK, Kasiyan II et al. (1962) Motor activity of intact animals under conditions of artificial gravity. Izvest Akad Nauk USSR, Ser Biol 3: 455-460

    Google Scholar 

  • Yuganov YM (1964) Physiological reactions in weightlessness. In: Aviation and Space Medicine. Parin VV (ed) NASA, Washington DC, NASA TT F-228

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Clément, G., Bukley, A., Paloski, W. (2007). History of Artificial Gravity. In: Clément, G., Bukley, A. (eds) Artificial Gravity. The Space Technology Library, vol 20. Springer, New York, NY. https://doi.org/10.1007/0-387-70714-X_3

Download citation

  • DOI: https://doi.org/10.1007/0-387-70714-X_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-70712-9

  • Online ISBN: 978-0-387-70714-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics