Skip to main content

Voltage-Gated Sodium Channels

  • Chapter
Biological Membrane Ion Channels

Part of the book series: Biological And Medical Physics Biomedical Engineering ((BIOMEDICAL))

Abstract

Voltage-gated sodium channels subserve regenerative excitation throughout the nervous system, as well as in skeletal and cardiac muscle. This excitation results from a voltage-dependent mechanism that increases regeneratively and selectively the sodium conductance of the channel e-fold for a 4–7 mV depolarization of the membrane with time constants in the range of tens of microseconds. Entry of Na+ into the cell without a companion anion depolarizes the cell. This depolarization, called the action potential, is propagated at rates of 1–20 meters/sec. In nerve it subserves rapid transmission of information and, in muscle cells, coordinates the trigger for contraction. Sodium-dependent action potentials depolarize the membrane to inside positive values of about 30–40 mV (approaching the electrochemical potential for the transmembrane sodium gradient). Repolarization to the resting potential (usually between –60 and –90 mV) occurs because of inactivation (closure) of sodium channels, which is assisted in different tissues by variable amounts of activation of voltage-gated potassium channels. This sequence results in all-or-nothing action potentials in nerve and fast skeletal muscle of 1–2 ms duration, and in heart muscle of 100–300 ms duration. Recovery of regenerative excitation, i.e., recovery of the ability of sodium channels to open, occurs after restoration of the resting potential with time constants of a few to several hundreds of milliseconds, depending on the channel isoform, and this rate controls the minimum interval for repetitive action potentials (refractory period).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, M.J., I. Splawski, J.C. Makielski, D.J. Tester, M.L. Will, K.W. Timothy, M.T. Keating, G. Jones, M. Chadha, C.R. Burrow, J.C. Stephens, C. Xu, R. Judson, and M.E. Curran. 2004. Spectrum and prevalence of cardiac sodium channel variants among black, white, Asian, and Hispanic individuals: Implications for arrhythmogenic susceptibility and Brugada/long QT syndrome genetic testing. Heart Rhythm 1:600–607.

    Article  Google Scholar 

  • Aldrich, R.W., D.P. Corey, and C.F. Stevens. 1983. A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature 306:436–441.

    Article  ADS  Google Scholar 

  • Aldrich, R.W., and C.F. Stevens. 1987. Voltage-dependent gating of single sodium channels from mammalian neuroblastoma cells. J. Neurosci. 7:418–431.

    Google Scholar 

  • Armstrong, C.M., and F. Bezanilla. 1977. Inactivation of the sodium channel. II. Gating current experiments. J. Gen. Physiol. 70:567–590.

    Article  Google Scholar 

  • Backx, P.H., D.T. Yue, J.H. Lawrence, E. Marban, and G.F. Tomaselli. 1992. Molecular localization of an ion-binding site within the pore of mammalian sodium channels. Science 257:248–251.

    Article  ADS  Google Scholar 

  • Balser, J.R., H.B. Nuss, N. Chiamvimonvat, M.T. Perez-Garcia, E. Marban, and G.F. Tomaselli. 1996. External pore residue mediates slow inactivation in mu 1 rat skeletal muscle sodium channels. J. Physiol. 494(Pt 2):431–442.

    Google Scholar 

  • Barchi, R.L. 1997. Ion channel mutations and diseases of skeletal muscle. Neurobiol. Dis. 4:254–264.

    Article  Google Scholar 

  • Becker, S., E. Prusak-Sochaczewski, G. Zamponi, A.G. Beck-Sickinger, R.D. Gordon, and R.J. French. 1992. Action of derivatives of mu-conotoxin GIIIA on sodium channels. Single amino acid substitutions in the toxin separately affect association and dissociation rates. Biochemistry 31:8229–8238.

    Article  Google Scholar 

  • Benitah, J.P., Z. Chen, J.R. Balser, G.F. Tomaselli, and E. Marban. 1999. Molecular dynamics of the sodium channel pore vary with gating: Interactions between P-segment motions and inactivation. J. Neurosci. 19:1577–1585.

    Google Scholar 

  • Berman, M.F., J.S. Camardo, R.B. Robinson, and S.A. Siegelbaum. 1989. Single sodium channels from canine ventricular myocytes: Voltage dependence and relative rates of activation and inactivation. J. Physiol. 415:503–531.

    Google Scholar 

  • Bezanilla, F. 2000. The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80:555–592.

    Google Scholar 

  • Cannon, S.C. 1996. Ion-channel defects and aberrant excitability in myotonia and periodic paralysis. Trends Neurosci. 19:3–10.

    Article  Google Scholar 

  • Cannon, S.C. 2000. Spectrum of sodium channel disturbances in the nondystrophic myotonias and periodic paralyses. Kidney Int. 57:772–779.

    Article  Google Scholar 

  • Catterall, W.A. 1980. Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu. Rev. Pharmacol. Toxicol. 20:15–43.

    Article  Google Scholar 

  • Catterall, W.A. 2000. From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels. Neuron 26:13–25.

    Article  Google Scholar 

  • Chang, N.S., R.J. French, G.M. Lipkind, H.A. Fozzard, and S. Dudley Jr. 1998. Predominant interactions between mu-conotoxin Arg-13 and the skeletal muscle Na+ channel localized by mutant cycle analysis. Biochemistry 37:4407–4419.

    Article  Google Scholar 

  • Chen, Q., G.E. Kirsch, D. Zhang, R. Brugada, J. Brugada, P. Brugada, D. Potenza, A. Moya, M. Borggrefe, G. Breithardt, R. Ortiz-Lopez, Z.Wang, C. Antzelevitch, R.E. O’Brien, E. Schulze-Bahr, M.T. Keating, J.A. Towbin, and Q. Wang. 1998. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 392:293–296.

    Article  ADS  Google Scholar 

  • Cummins, T.R., and F.J. Sigworth. 1996. Impaired slowinactivation in mutant sodium channels. Biophys. J. 71:227–236.

    Article  Google Scholar 

  • Doyle, D.A., J. Morais Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, and R. MacKinnon. 1998. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280:69–77.

    Article  ADS  Google Scholar 

  • Dudley, S.C., Jr., N. Chang, J. Hall, G. Lipkind, H.A. Fozzard, and R.J. French. 2000. mu-conotoxin GIIIA interactions with the voltage-gated Na(+) channel predict a clockwise arrangement of the domains. J. Gen. Physiol. 116:679–690.

    Article  Google Scholar 

  • Favre, I., E. Moczydlowski, and L. Schild. 1996. On the structural basis for ionic selectivity among Na+, K+, and Ca2+ in the voltage-gated sodium channel. Biophys. J. 71:3110–3125.

    Article  ADS  Google Scholar 

  • Featherstone, D.E., J.E. Richmond, and P.C. Ruben. 1996. Interaction between fast and slow inactivation in Skm1 sodium channels. Biophys. J. 71:3098–3109.

    Article  ADS  Google Scholar 

  • Fozzard, H.A., and D.A. Hanck. 1996. Structure and function of voltage-dependent sodium channels: Comparison of brain II and cardiac isoforms. Physiol. Rev. 76:887–926.

    Google Scholar 

  • French, R.J., and S.C. Dudley Jr. 1999. Pore-blocking toxins as probes of voltagedependent channels. Methods Enzymol. 294:575–605.

    Article  Google Scholar 

  • Goldin, A.L. 2001. Resurgence of sodium channel research. Annu. Rev. Physiol. 63:871–894.

    Article  Google Scholar 

  • Guy, H.R., and P. Seetharamulu. 1986. Molecular model of the action potential sodium channel. Proc. Natl. Acad. Sci. USA, 83:508–512.

    Article  ADS  Google Scholar 

  • Hanck, D.A., and M.F. Sheets. 1995. Modification of inactivation in cardiac sodium channels: Ionic current studies with Anthopleurin-A toxin. J. Gen. Physiol. 106:601–616.

    Article  Google Scholar 

  • Hanck, D.A., M.F. Sheets, and H.A. Fozzard. 1990. Gating currents associated with Na channels in canine cardiac Purkinje cells. J. Gen. Physiol. 95:439–457.

    Article  Google Scholar 

  • Heinemann, S.H., H. Terlau, and K. Imoto. 1992. Molecular basis for pharmacological differences between brain and cardiac sodium channels. Pflugers Arch. 422:90–92.

    Article  Google Scholar 

  • Hilber, K.,W. Sandtner, O. Kudlacek, I.W. Glaaser, E.Weisz, J.W. Kyle, R.J. French, H.A. Fozzard, S.C. Dudley, and H. Todt. 2001. The selectivity filter of the voltage-gated sodium channel is involved in channel activation. J. Biol. Chem. 276:27831–27839.

    Article  Google Scholar 

  • Hilber, K., W. Sandtner, T. Zarrabi, E. Zebedin, O. Kudlacek, H.A. Fozzard, and H. Todt. 2005. Selectivity filter residues contribute unequally to pore stabilization in voltage-gated sodium channels. Biochemistry 44:13874–13882.

    Article  Google Scholar 

  • Hodgkin, A.L., and A.F. Huxley. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500–544.

    Google Scholar 

  • Hoshi, T.,W.N. Zagotta, and R.W. Aldrich. 1990. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250:533–538.

    Article  ADS  Google Scholar 

  • Hui, K., G. Lipkind, H.A. Fozzard, and R.J. French. 2002. Electrostatic and steric contributions to block of the skeletal muscle sodium channel by mu-conotoxin. J. Gen. Physiol. 119:45–54.

    Article  Google Scholar 

  • Jiang, Y., A. Lee, J. Chen, M. Cadene, B.T. Chait, and R. MacKinnon. 2002. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515–522.

    Article  ADS  Google Scholar 

  • Khan, A., L. Romantseva, A. Lam, G. Lipkind, and H.A. Fozzard. 2002. Role of outer ring carboxylates of the rat skeletal muscle sodium channel pore in proton block. J. Physiol. 543:71–84.

    Article  Google Scholar 

  • Kuroda, Y., K. Miyamoto, M. Matsumoto, Y. Maeda, K. Kanaori, A. Otaka, N. Fujii, and T. Nakagawa. 2000. Structural study of the sodium channel inactivation gate peptide including an isoleucine-phenylalanine-methionine motif and its analogous peptide (phenylalanine/glutamine) in trifluoroethanol solutions and SDS micelles. J. Pept. Res. 56:172–184.

    Article  Google Scholar 

  • Lipkind, G.M., and H.A. Fozzard. 1994. A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel. Biophys. J. 66:1–13.

    Article  ADS  Google Scholar 

  • Lipkind, G.M., and H.A. Fozzard. 2000. KcsA crystal structure as framework for a molecular model of the Na(+) channel pore. Biochemistry 39:8161–8170.

    Article  Google Scholar 

  • Lipkind, G.M., and H.A. Fozzard. 2005. Molecular modeling of local anesthetic drug binding by voltage-gated sodium channels. Mol. Pharmacol. 68:1611– 1622.

    Google Scholar 

  • Makielski, J.C., M.F. Sheets, D.A. Hanck, C.T. January, and H.A. Fozzard. 1987. Sodium current in voltage clamped internally perfused canine cardiac Purkinje cells. Biophys. J. 52:1–11.

    Article  Google Scholar 

  • Makielski, J.C., B. Ye, C.R. Valdivia, M.D. Pagel, J. Pu, D.J. Tester, and M.J. Ackerman. 2003. A ubiquitous splice variant and a common polymorphism affect heterologous expression of recombinant human SCN5A heart sodium channels. Circ. Res. 93:821–828.

    Article  Google Scholar 

  • Noda, M., H. Suzuki, S. Numa, and W. Stuhmer. 1989. A single point mutation confers tetrodotoxin and saxitoxin insensitivity on the sodium channel II. FEBS Lett. 259:213–216.

    Article  Google Scholar 

  • Ong, B.H., G.F. Tomaselli, and J.R. Balser. 2000. A structural rearrangement in the sodium channel pore linked to slow inactivation and use dependence. J. Gen. Physiol. 116:653–662.

    Article  Google Scholar 

  • O’Reilly, J.P., S.Y. Wang, R.G. Kallen, and G.K. Wang. 1999. Comparison of slow inactivation in human heart and rat skeletal muscle Na+ channel chimaeras. J. Physiol. 515(Pt 1):61–73.

    Article  Google Scholar 

  • Penzotti, J.L., G. Lipkind, H.A. Fozzard, and S.C. Dudley Jr. 2001. Specific neosaxitoxin interactions with the Na+ channel outer vestibule determined by mutant cycle analysis. Biophys. J. 80:698–706.

    Article  Google Scholar 

  • Ren, D., B. Navarro, H. Xu, L. Yue, Q. Shi, and D.E. Clapham. 2001. A prokaryotic voltage-gated sodium channel. Science 294:2372–2375.

    Article  ADS  Google Scholar 

  • Richmond, J.E., D.E. Featherstone, H.A. Hartmann, and P.C. Ruben. 1998. Slow inactivation in human cardiac sodium channels. Biophys. J. 74:2945– 2952.

    Article  ADS  Google Scholar 

  • Rohl, C.A., F.A. Boeckman, C. Baker, T. Scheuer, W.A. Catterall, and R.E. Klevit. 1999. Solution structure of the sodium channel inactivation gate. Biochemistry 38:855–861.

    Article  Google Scholar 

  • Rudy, B. 1978. Slow inactivation of the sodium conductance in squid giant axons. Pronase resistance. J. Physiol. 283:1–21.

    Google Scholar 

  • Sandtner, W., J. Szendroedi, T. Zarrabi, E. Zebedin, K. Hilber, I. Glaaser, H.A. Fozzard, S.C. Dudley, and H. Todt. 2004. Lidocaine: A foot in the door of the inner vestibule prevents ultra-slow inactivation of a voltage-gated sodium channel. Mol. Pharmacol. 66:648–657.

    Google Scholar 

  • Satin, J., J.W. Kyle, M. Chen, P. Bell, L.L. Cribbs, H.A. Fozzard, and R.B. Rogart. 1992. A mutant of TTX-resistant cardiac sodium channels with TTX-sensitive properties. Science 256:1202–1205.

    Article  ADS  Google Scholar 

  • Scanley, B.E., D.A. Hanck, T. Chay, and H.A. Fozzard. 1990. Kinetic analysis of single sodium channels from canine cardiac Purkinje cells. J. Gen. Physiol. 95:411–437.

    Article  Google Scholar 

  • Schild, L., and E. Moczydlowski. 1994. Permeation of Na+ through open and Zn(2+)-occupied conductance states of cardiac sodium channels modified by batrachotoxin: Exploring ion-ion interactions in a multi-ion channel. Biophys. J. 66:654–666.

    Article  ADS  Google Scholar 

  • Schlief, T., R. Schonherr, K. Imoto, and S.H. Heinemann. 1996. Pore properties of rat brain II sodium channels mutated in the selectivity filter domain. Eur. Biophys. J. 25:75–91.

    Article  Google Scholar 

  • Sheets, M.F., and D.A. Hanck. 1995. Voltage-dependent open-state inactivation of cardiac sodium channels: Gating current studies with Anthopleurin-A toxin. J. Gen. Physiol. 106:617–640.

    Article  Google Scholar 

  • Sheets, M.F., and D.A. Hanck. 1999. Gating of skeletal and cardiac muscle sodium channels in mammalian cells. J. Physiol. 514(Pt 2):425–436.

    Article  Google Scholar 

  • Sheets, M.F., and D.A. Hanck. 2003. Molecular action of lidocaine on the voltage sensors of sodium channels. J. Gen. Physiol. 121:163–175.

    Article  Google Scholar 

  • Sheets, M.F., and D.A. Hanck. 2005. Charge immobilization of the voltage sensor in domain IV is independent of sodium current inactivation. J. Physiol. 563:83–93.

    Article  Google Scholar 

  • Sheets, M.F., J.W. Kyle, and D.A. Hanck. 2000. The role of the putative inactivation lid in sodium channel gating current immobilization. J. Gen. Physiol. 115:609–620.

    Article  Google Scholar 

  • Sheets, M.F., J.W. Kyle, R.G. Kallen, and D.A. Hanck. 1999. The Na channel voltage sensor associated with inactivation is localized to the external charged residues of domain IV, S4. Biophys. J. 77:747–757.

    Article  Google Scholar 

  • Splawski, I., K.W. Timothy, M. Tateyama, C.E. Clancy, A. Malhotra, A.H. Beggs, F.P. Cappuccio, G.A. Sagnella, R.S. Kass, and M.T. Keating. 2002. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science 297:1333–1336.

    Article  ADS  Google Scholar 

  • Struyk, A.F., and S.C. Cannon. 2002. Slow inactivation does not block the aqueous accessibility to the outer pore of voltage-gated Na channels. J. Gen. Physiol. 120:509–516.

    Article  Google Scholar 

  • Stuhmer, W., F. Conti, H. Suzuki, X.D. Wang, M. Noda, N. Yahagi, H. Kubo, and S. Numa. 1989. Structural parts involved in activation and inactivation of the sodium channel. Nature 339:597–603.

    Article  ADS  Google Scholar 

  • Sunami, A., A. Tracey, I.W. Glaaser, G.M. Lipkind, D.A. Hanck, and H.A. Fozzard. 2004. Accessibility of mid-segment domain IV S6 residues of the voltage-gated Na+ channel to methanethiosulfonate reagents. J. Physiol. 561:403–413.

    Article  Google Scholar 

  • Terlau, H., S.H. Heinemann, W. Stuhmer, M. Pusch, F. Conti, K. Imoto, and S. Numa. 1991. Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II. FEBS Lett. 293:93–96.

    Article  Google Scholar 

  • Todt, H., S.C. Dudley Jr., J.W. Kyle, R.J. French, and H.A. Fozzard. 1999. Ultra-slow inactivation in mu1 Na+ channels is produced by a structural rearrangement of the outer vestibule. Biophys. J. 76:1335–1345.

    Article  Google Scholar 

  • Townsend, C., and R. Horn.1997 Effect of alkali metal cations on slow inactivation of cardiac Na+ channels. J. Gen. Physiol. 110:23–33.

    Article  Google Scholar 

  • Ulbricht, W. 2005. Sodium channel inactivation: Molecular determinants and modulation. Physiol. Rev. 85:1271–1301.

    Article  Google Scholar 

  • Vandenberg, C.A., and F. Bezanilla. 1991. Single-channel, macroscopic, and gating currents from sodium channels in the squid giant axon. Biophys. J. 60:1499–1510.

    Article  Google Scholar 

  • Vedantham, V., and S.C. Cannon. 1998. Slow inactivation does not affect movement of the fast inactivation gate in voltage-gated Na+ channels. J. Gen. Physiol. 111:83–93.

    Article  Google Scholar 

  • Vedantham, V., and S.C. Cannon. 1999. The position of the fast-inactivation gate during lidocaine block of voltage-gated Na+ channels. J. Gen. Physiol. 113:7–16.

    Article  Google Scholar 

  • Vedantham, V., and S.C. Cannon. 2000. Rapid and slow voltage-dependent conformational changes in segment IVS6 of voltage-gated Na(+) channels. Biophys. J. 78:2943–2958.

    Article  Google Scholar 

  • Wallace, R.H., D.W.Wang, R. Singh, I.E. Scheffer, A.L. George Jr., H.A. Phillips, K. Saar, A. Reis, E.W. Johnson, G.R. Sutherland, S.F. Berkovic, and J.C. Mulley. 1998. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel beta1 subunit gene SCN1B. Nat. Genet. 19:366–370.

    Article  Google Scholar 

  • Wang, Q., J. Shen, I. Splawski, D. Atkinson, Z. Li, J.L. Robinson, A.J. Moss, J.A. Towbin, and M.T. Keating. 1995. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80:805–811.

    Article  Google Scholar 

  • West, J.W., D.E. Patton, T. Scheuer, Y.Wang, A.L. Goldin, and W.A. Catterall. 1992. A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc. Natl. Acad. Sci. USA 89:10910–10914.

    Article  ADS  Google Scholar 

  • Xiong, W., R.A. Li, Y. Tian, and G.F. Tomaselli. 2003. Molecular motions of the outer ring of charge of the sodium channel: Do they couple to slow inactivation? J. Gen. Physiol. 122:323–332.

    Article  Google Scholar 

  • Yarov-Yarovoy, V., J.C. McPhee, D. Idsvoog, C. Pate, T. Scheuer, and W.A. Catterall. 2002. Role of amino acid residues in transmembrane segments IS6 and IIS6 of the Na+ channel alpha subunit in voltage-dependent gating and drug block. J. Biol. Chem. 277:35393–35401.

    Article  Google Scholar 

  • Yue, D.T., J.H. Lawrence, and E. Marban. 1989. Two molecular transitions influence cardiac sodium channel gating. Science 244:349–352.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Hanck, D.A., Fozzard, H.A. (2007). Voltage-Gated Sodium Channels. In: Chung, SH., Andersen, O.S., Krishnamurthy, V. (eds) Biological Membrane Ion Channels. Biological And Medical Physics Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/0-387-68919-2_6

Download citation

Publish with us

Policies and ethics