Skip to main content

Voltage-Gated Potassium Channels

  • Chapter
Biological Membrane Ion Channels

Part of the book series: Biological And Medical Physics Biomedical Engineering ((BIOMEDICAL))

Abstract

Potassium (KC) channels are largely responsible for shaping the electrical behavior of cell membranes. KC channel currents set the resting membrane potential, control action potential duration, control the rate of action potential firing, control the spread of excitation and Ca2C influx, and provide active opposition to excitation. To support these varied functions, there are a large number of KC channel types, with a great deal of phenotypic diversity, whose properties can be modified by many different accessory proteins and biochemical modulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, G.W., and S.A. Goldstein. 2001. Potassium channel subunits encoded by the KCNE gene family: Physiology and pathophysiology of the MinK-related peptides (MiRPs). Mol. Interv. 1:95–107.

    Google Scholar 

  • Abbott, G.W., and S.A. Goldstein. 2002. Disease-associated mutations in KCNE potassium channel subunits (MiRPs) reveal promiscuous disruption of multiple currents and conservation of mechanism. FASEB J. 16:390–400.

    Google Scholar 

  • Abbott, G.W., M.H. Butler, S. Bendahhou, M.C. Dalakas, L.J. Ptacek, and S.A. Goldstein. 2001. MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis. Cell 104:217–231.

    Google Scholar 

  • Abbott, G.W., F. Sesti, I. Splawski, M.E. Buck, M.H. Lehmann, K.W. Timothy, M.T. Keating, and S.A. Goldstein. 1999. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 97:175–187.

    Google Scholar 

  • Aggarwal, S.K., and R. MacKinnon. 1996. Contribution of the S4 segment to gating charge in the Shaker KC channel. Neuron 16:1169–1177.

    Google Scholar 

  • Ahern, C.A., and R. Horn. 2004. Stirring up controversy with a voltage sensor paddle. Trends Neurosci. 27:303–307.

    Google Scholar 

  • Aldrich, R.W. 2001. Fifty years of inactivation. Nature 411:643–644.

    ADS  Google Scholar 

  • An, W.F., M.R. Bowlby, M. Betty, J. Cao, H.P. Ling, G. Mendoza, J.W. Hinson, K.I. Mattsson, B.W. Strassle, J.S. Trimmer, and K.J. Rhodes. 2000. Modulation of A-type potassium channels by a family of calcium sensors. Nature 403:553–556.

    ADS  Google Scholar 

  • Andalib, P., J.F. Consiglio, J.G. Trapani, and S.J. Korn. 2004. The external TEA binding site and C-type inactivation in voltage-gated potassium channels. Biophys. J. 87:3148–3161.

    ADS  Google Scholar 

  • Andalib, P., M.J. Wood, and S.J. Korn. 2002. Control of outer vestibule dynamics and current magnitude in the Kv2.1 potassium channel. J. Gen. Physiol. 120:739–755.

    Google Scholar 

  • Anderson, A.E., J.P. Adams, Y. Qian, R.G. Cook, P.J. Pfaffinger, and J.D. Sweatt. 2000. Kv4.2 phosphorylation by cyclic AMP-dependent protein kinase. J. Biol. Chem. 275:5337–5346.

    Google Scholar 

  • Araque, A., N. Li, R.T. Doyle, and P.G. Haydon. 2000. SNARE protein-dependent glutamate release from astrocytes. J. Neurosci. 20:666–673.

    Google Scholar 

  • Armstrong, C.M. 1971. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J. Gen. Physiol. 58:413–437.

    Google Scholar 

  • Armstrong, C.M., and F. Bezanilla. 1977. Inactivation of the sodium channel. II. Gating current experiments. J. Gen. Physiol. 70:567–590.

    Google Scholar 

  • Armstrong, C.M., and B. Hille. 1972. The inner quaternary ammonium ion receptor in potassium channels of the node of Ranvier. J. Gen. Physiol. 59:388–400.

    Google Scholar 

  • Bao, H., A. Hakeem, M. Henteleff, J.G. Starkus, and M.D. Rayner. 1999. Voltage insensitive gating after charge-neutralizing mutations in the S4 segment of Shaker channels. J. Gen. Physiol. 113:139–151.

    Google Scholar 

  • Baranauskas, G., T. Tkatch, K. Nagata, J.Z. Yeh, and D.J. Surmeier. 2003. Kv3.4 subunits enhance the repolarizing efficiency of Kv3.1 channels in fast-spiking neurons. Nat. Neurosci. 6:258–266.

    Google Scholar 

  • Barhanin, J., F. Lesage, E. Guillemare, M. Fink, M. Lazdunski, and G. Romey. 1996. KV LQT1 and lsK (minK) proteins associate to form the IKs cardiac potassium current. Nature 384:78–80.

    ADS  Google Scholar 

  • Baukrowitz, T., and G. Yellen. 1996. Use-dependent blockers and exit rate of the last ion from the multi-ion pore of a KC channel. Science 271:653–656.

    ADS  Google Scholar 

  • Beck, E.J., M. Bowlby, W.F. An, K.J. Rhodes, and M. Covarrubias. 2002. Remodelling inactivation gating of Kv4 channels by KChIP1, a small-molecularweight calcium-binding protein. J. Physiol. 538:691–706.

    Google Scholar 

  • Bernèche, S., and B. Roux. 2001. Energetics of ion conduction through the KC channel. Nature 414:73–77.

    ADS  Google Scholar 

  • Bernèche, S., and B. Roux. 2005. A gate in the selectivity filter of potassium channels. Structure (Camb) 13:591–600.

    Google Scholar 

  • Blaine, J.T., A.D. Taylor, and A.B. Ribera. 2004. Carboxyl tail region of the Kv2.2 subunit mediates novel developmental regulation of channel density. J. Neurophysiol. 92:3446–3454.

    Google Scholar 

  • Bond, C.T., J. Maylie, and J.P. Adelman. 1999. Small-conductance calcium-activated potassium channels. Ann. N.Y. Acad. Sci. 868:370–378.

    ADS  Google Scholar 

  • Bowlby, M.R., D.A. Fadool, T.C. Holmes, and I.B. Levitan. 1997. Modulation of the Kv1.3 potassium channel by receptor tyrosine kinases. J. Gen. Physiol. 110:601–610.

    Google Scholar 

  • Brelidze, T.I., X. Niu, and K.L. Magleby. 2003. A ring of eight conserved negatively charged amino acids doubles the conductance of BK channels and prevents inward rectification. Proc. Natl. Acad. Sci. USA 100:9017–9022.

    ADS  Google Scholar 

  • Brew, H.M., J.L. Hallows, and B.L. Tempel. 2003. Hyperexcitability and reduced low threshold potassium currents in auditory neurons of mice lacking the channel subunit Kv1.1. J. Physiol. 548:1–20.

    Google Scholar 

  • Browne, D.L., S.T. Gancher, J.G. Nutt, E.R. Brunt, E.A. Smith, P. Kramer, and M. Litt. 1994. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat. Genet. 8:136–140.

    Google Scholar 

  • Bruening-Wright, A., M.A. Schumacher, J.P. Adelman, and J. Maylie. 2002. Localization of the activation gate for small conductance Ca2C -activated KC channels. J. Neurosci. 22:6499–6506.

    Google Scholar 

  • Buckingham, S.D., J.F. Kidd, R.J. Law, C.J. Franks, and D.B. Sattelle. 2005. Structure and function of two-pore-domain KC channels: Contributions from genetic model organisms. Trends Pharmacol. Sci. 26:361–367.

    Google Scholar 

  • Cai, X., C.W. Liang, S. Muralidharan, S. Muralidharan, J.P. Kao, C.M. Tang, and S.M. Thompson. 2004. Unique roles of SK and Kv4.2 potassium channels in dendritic integration. Neuron 44:351–364.

    Google Scholar 

  • Chanda, B., O.K. Asamoah, R. Blunck, B. Roux, and F. Bezanilla. 2005. Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement. Nature 436:852–856.

    ADS  Google Scholar 

  • Chandy, G.K., H. Wulff, C. Beeton, M. Pennington, G.A. Gutman, and M.D. Cahalan. 2004. KC channels as targets for specific immunomodulation. Trends Pharmacol. Sci. 25:280–289.

    Google Scholar 

  • Chen, H., L.A. Kim, S. Rajan, S. Xu, and S.A. Goldstein. 2003a. Charybdotoxin binding in the IKs pore demonstrates two MinK subunits in each channel complex. Neuron 40:15–23.

    Google Scholar 

  • Chen, H., F. Sesti, and S.A. Goldstein. 2003b. Pore- and state-dependent cadmium block of I(Ks) channels formed with MinK-55C and wild-type KCNQ1 subunits. Biophys. J. 84:3679–3689.

    Google Scholar 

  • Chiara, M.D., F. Monje, A. Castellano, and J. López-Barneo. 1999. A small domain in the N terminus of the regulatory alpha-subunit Kv2.3 modulates Kv2.1 potassium channel gating. J. Neurosci. 19:6865–6873.

    Google Scholar 

  • Choi, K.L., R.W. Aldrich, and G. Yellen. 1991. Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated KC channels. Proc. Natl. Acad. Sci. USA 88:5092–5095.

    ADS  Google Scholar 

  • Choi, K.L., C. Mossman, J. Aubé, and G. Yellen. 1993. The internal quaternary ammonium receptor site of Shaker potassium channels. Neuron 10:533–541.

    Google Scholar 

  • Chung, S.H., T.W. Allen, and S. Kuyucak. 2002. Conducting-state properties of the KcsA potassium channel from molecular and Brownian dynamics simulations. Biophys. J. 82:628–645.

    Google Scholar 

  • Connor, J.A., and C.F. Stevens. 1971a. Prediction of repetitive firing behaviour from voltage clamp data on an isolated neuron soma. J. Physiol. 213:31–53.

    Google Scholar 

  • Connor, J.A., and C.F. Stevens. 1971b. Voltage clamp studies of a transient outward membrane current in gastropod neural somata. J. Physiol. 213:21–30.

    Google Scholar 

  • Consiglio, J.F., P. Andalib, and S.J. Korn. 2003. Influence of pore residues on permeation properties in the Kv2.1 potassium channel. Evidence for a selective functional interaction of KC with the outer vestibule. J. Gen. Physiol. 121:111–124.

    Google Scholar 

  • Consiglio, J.F., and S.J. Korn. 2004. Influence of permeant ions on voltage sensor function in the Kv2.1 potassium channel. J. Gen. Physiol. 123:387–400.

    Google Scholar 

  • Crouzy, S., S. Bernèche, and B. Roux. 2001. Extracellular blockade of KC channels by TEA: Results from molecular dynamics simulations of the KcsA channel. J. Gen. Physiol. 118:207–218.

    Google Scholar 

  • Cushman, S.J., M.H. Nanao, A.W. Jahng, D. DeRubeis, S. Choe, and P.J. Pfaffinger. 2000. Voltage dependent activation of potassium channels is coupled to T1 domain structure. Nat. Struct. Biol. 7:403–407.

    Google Scholar 

  • Damjanovich, S., R. Gáspár, and G. Panyi. 2004. An alternative to conventional immunosuppression: Small-molecule inhibitors of kv1.3 channels. Mol. Interv. 4:250–254.

    Google Scholar 

  • Decher, N., J. Chen, and M.C. Sanguinetti. 2004. Voltage-dependent gating of hyperpolarization-activated, cyclic nucleotide-gated pacemaker channels: Molecular coupling between the S4–S5 and C-linkers. J. Biol. Chem. 279:13859–13865.

    Google Scholar 

  • del Camino, D., M. Holmgren, Y. Liu, and G. Yellen. 2000. Blocker protection in the pore of a voltage-gated KC channel and its structural implications. Nature 403:321–325.

    ADS  Google Scholar 

  • del Camino, D., and G. Yellen. 2001. Tight steric closure at the intracellular activation gate of a voltage-gated KC channel. Neuron 32:649–656.

    Google Scholar 

  • Ding, S., and R. Horn. 2002. Tail end of the s6 segment: Role in permeation in shaker potassium channels. J. Gen. Physiol. 120:87–97.

    Google Scholar 

  • Ding, S., and R. Horn. 2003. Effect of S6 tail mutations on charge movement in Shaker potassium channels. Biophys. J. 84:295–305.

    ADS  Google Scholar 

  • Doyle, D.A., J. Morais Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, and R. MacKinnon. 1998. The structure of the potassium channel: Molecular basis of KC conduction and selectivity. Science 280:69–77.

    ADS  Google Scholar 

  • Du, J., L.L. Haak, E. Phillips-Tansey, J.T. Russell, and C.J. McBain. 2000. Frequency dependent regulation of rat hippocampal somato-dendritic excitability by the KC channel subunit Kv2.1. J. Physiol. 522(Pt 1):19–31.

    Google Scholar 

  • Du, J., J.H. Tao-Cheng, P. Zerfas, and C.J. McBain. 1998. The KC channel, Kv2.1, is apposed to astrocytic processes and is associated with inhibitory postsynaptic membranes in hippocampal and cortical principal neurons and inhibitory interneurons. Neuroscience 84:37–48.

    Google Scholar 

  • Espinosa, F., R. Fleischhauer, A. McMahon, and R.H. Joho. 2001. Dynamic interaction of S5 and S6 during voltage-controlled gating in a potassium channel. J. Gen. Physiol. 118:157–170.

    Google Scholar 

  • Fadool, D.A., and I.B. Levitan. 1998. Modulation of olfactory bulb neuron potassium current by tyrosine phosphorylation. J. Neurosci. 18:6126–6137.

    Google Scholar 

  • Fadool, D.A., K. Tucker, R. Perkins, G. Fasciani, R.N. Thompson, A.D. Parsons, J.M. Overton, P.A. Koni, R.A. Flavell, and L.K. Kaczmarek. 2004. Kv1.3 channel gene-targeted deletion produces “Super-Smeller Mice” with altered glomeruli, interacting scaffolding proteins, and biophysics. Neuron 41:389–404.

    Google Scholar 

  • Fellin, T., O. Pascual, S. Gobbo, T. Pozzan, P.G. Haydon, and G. Carmignoto. 2004. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43:729–743.

    Google Scholar 

  • Flynn, G.E., and W.N. Zagotta. 2001. Conformational changes in S6 coupled to the opening of cyclic nucleotide-gated channels. Neuron 30:689–698.

    Google Scholar 

  • Giese, K.P., J.F. Storm, D. Reuter, N.B. Fedorov, L.R. Shao, T. Leicher, O. Pongs, and A.J. Silva. 1998. Reduced KC channel inactivation, spike broadening, and after-hyper polarization in Kvbeta1.1-deficient mice with impaired learning. Learn Mem. 5:257–273.

    Google Scholar 

  • Goldberg, E.M., S. Watanabe, S.Y. Chang, R.H. Joho, Z.J. Huang, C.S. Leonard, and B. Rudy. 2005. Specific functions of synaptically localized potassium channels in synaptic transmission at the neocortical GABAergic fast-spiking cell synapse. J. Neurosci. 25:5230–5235.

    Google Scholar 

  • Goldstein, S.A., D. Bockenhauer, I. O’Kelly, and N. Zilberberg. 2001. Potassium leak channels and the KCNK family of two-P-domain subunits. Nat. Rev. Neurosci. 2:175–184.

    Google Scholar 

  • Goldstein, S.A., L.A. Price, D.N. Rosenthal, and M.H. Pausch. 1996. ORK1, a potassium-selective leak channel with two pore domains cloned from Drosophila melanogaster by expression in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93:13256–13261.

    ADS  Google Scholar 

  • Goldstein, S.A.N., M.T. Keating, and M.C. Sanguinetti. 2004. Cardiac arrhythmias: Inherited molecular mechanisms. In: Molecular Basis of Cardiovascular Disease, 2nd Ed. K.R. Chien, editor. Saunders, Philadelphia, PA, pp. 336–348.

    Google Scholar 

  • Grissmer, S., and M. Cahalan. 1989. TEA prevents inactivation while blocking open KC channels in human T lymphocytes. Biophys. J. 55:203–206.

    Google Scholar 

  • Gulbis, J.M., M. Zhou, S. Mann, and R. MacKinnon. 2000. Structure of the cytoplasmic beta subunit-T1 assembly of voltage-dependent KC channels. Science 289:123–127.

    ADS  Google Scholar 

  • Gutman, G.A., K.G. Chandy, J.P. Adelman, J. Aiyar, D.A. Bayliss, D.E. Clapham, M. Covarriubias, G.V. Desir, K. Furuichi, B. Ganetzky, M.L. Garcia, S. Grissmer, L.Y. Jan, A. Karschin, D. Kim, S. Kuperschmidt, Y. Kurachi, M. Lazdunski, F. Lesage, H.A. Lester, D. McKinnon, C.G. Nichols, I. O’Kelly, J. Robbins, G.A. Robertson, B. Rudy, M. Sanguinetti, S. Seino, W. Stuehmer, M.M. Tamkun, C.A. Vandenberg, A. Wei, H. Wulff, R.S. Wymore, and International Union of Pharmacology. 2003. International Union of Pharmacology. XLI. Compendium of voltage-gated ion channels: Potassium channels. Pharmacol. Rev. 55:583–586.

    Google Scholar 

  • Hackos, D.H., T.H. Chang, and K.J. Swartz. 2002. Scanning the intracellular S6 activation gate in the shaker KC channel. J. Gen. Physiol. 119:521–532.

    Google Scholar 

  • Hartmann, H.A., G.E. Kirsch, J.A. Drewe, M. Taglialatela, R.H. Joho, and A.M. Brown. 1991. Exchange of conduction pathways between two related KC channels. Science 251:942–944.

    ADS  Google Scholar 

  • Heginbotham, L., Z. Lu, T. Abramson, and R. MacKinnon. 1994. Mutations in the KC channel signature sequence. Biophys. J. 66:1061–1067.

    Google Scholar 

  • Heginbotham, L., and R. MacKinnon. 1992. The aromatic binding site for tetraethylammonium ion on potassium channels. Neuron 8:483–491.

    Google Scholar 

  • Hodgkin, A.L., and A.F. Huxley. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500–544.

    Google Scholar 

  • Hodgkin, A.L., and B. Katz. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. 108:37–77.

    Google Scholar 

  • Hoffman, D.A., J.C. Magee, C.M. Colbert, and D. Johnston. 1997. KC channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387:869–875.

    ADS  Google Scholar 

  • Holmes, T.C., D.A. Fadool, and I.B. Levitan. 1996. Tyrosine phosphorylation of the Kv1.3 potassium channel. J. Neurosci. 16:1581–1590.

    Google Scholar 

  • Holmqvist, M.H., J. Cao, R. Hernandez-Pineda, M.D. Jacobson, K.I. Carroll, M.A. Sung, M. Betty, P. Ge, K.J. Gilbride, M.E. Brown, M.E. Jurman, D. Lawson, I. Silos-Santiago, Y. Xie, M. Covarrubias, K.J. Rhodes, P.S. Distefano, and W.F. An. 2002. Elimination of fast inactivation in Kv4 A-type potassium channels by an auxiliary subunit domain. Proc. Natl. Acad. Sci. USA 99:1035–1040.

    ADS  Google Scholar 

  • Hoshi, T., W.N. Zagotta, and R.W. Aldrich. 1990. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250:533–538.

    ADS  Google Scholar 

  • Hoshi, T., W.N. Zagotta, and R.W. Aldrich. 1991. Two types of inactivation in Shaker KC channels: Effects of alterations in the carboxy-terminal region. Neuron 7:547–556.

    Google Scholar 

  • Immke, D., M. Wood, L. Kiss, and S.J. Korn. 1999. Potassium-dependent changes in the conformation of the Kv2.1 potassium channel pore. J. Gen. Physiol. 113:819–836.

    Google Scholar 

  • Immke, D., and S.J. Korn. 2000. Ion–ion interactions at the selectivity filter. Evidence from KC -dependent modulation of tetraethylammonium efficacy in Kv2.1 potassium channels. J. Gen. Physiol. 115:509–518.

    Google Scholar 

  • Jerng, H.H., and W.F. Gilly. 2002. Inactivation and pharmacological properties of sqKv1A homotetramers in Xenopus oocytes cannot account for behavior of the squid “delayed rectifier” KC conductance. Biophys. J. 82:3022–3036.

    ADS  Google Scholar 

  • Jerng, H.H., K. Kunjilwar, and P.J. Pfaffinger. 2005. Multiprotein assembly of Kv4.2, KChIP3, and DPP10 produces ternary channel complexes with ISA-like properties. J. Physiol. 767–788.

    Google Scholar 

  • Jerng, H.H., P.J. Pfaffinger, and M. Covarrubias. 2004a. Molecular physiology and modulation of somatodendritic A-type potassium channels. Mol. Cell Neurosci. 27:343–369.

    Google Scholar 

  • Jerng, H.H., Y. Qian, and P.J. Pfaffinger. 2004b. Modulation of Kv4.2 channel expression and gating by dipeptidyl peptidase 10 (DPP10). Biophys. J. 87:2380–2396.

    ADS  Google Scholar 

  • Jiang, X., G.C. Bett, X. Li, V.E. Bondarenko, and R.L. Rasmusson. 2003a. C-type inactivation involves a significant decrease in the intracellular aqueous pore volume of Kv1.4 KC channels expressed in Xenopus oocytes. J. Physiol. 549:683–695.

    Google Scholar 

  • Jiang, Y., A. Lee, J. Chen, M. Cadene, B.T. Chait, and R. MacKinnon. 2002. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515–522.

    ADS  Google Scholar 

  • Jiang, Y., A. Lee, J. Chen, V. Ruta, M. Cadene, B.T. Chait, and R. MacKinnon. 2003b. X-ray structure of a voltage-dependent KC channel. Nature 423:33–41.

    ADS  Google Scholar 

  • Jiang, Y., and R. MacKinnon. 2000. The barium site in a potassium channel by x-ray crystallography. J. Gen. Physiol. 115:269–272.

    Google Scholar 

  • Johnson, J.P., and W.N. Zagotta. 2001. Rotational movement during cyclic nucleotide-gated channel opening. Nature 412:917–921.

    ADS  Google Scholar 

  • Johnston, D., D.A. Hoffman, J.C. Magee, N.P. Poolos, S. Watanabe, C.M. Colbert, and M. Migliore. 2000. Dendritic potassium channels in hippocampal pyramidal neurons. J. Physiol. 525(Pt 1):75–81.

    Google Scholar 

  • Jow, F., Z.H. Zhang, D.C. Kopsco, K.C. Carroll, and K. Wang. 2004. Functional coupling of intracellular calcium and inactivation of voltage-gated Kv1.1/Kvbeta1.1 A-type KC channels. Proc. Natl. Acad. Sci. USA 101:15535–5540.

    ADS  Google Scholar 

  • Ju, M., L. Stevens, E. Leadbitter, and D. Wray. 2003. The roles of N- and C-terminal determinants in the activation of the Kv2.1 potassium channel. J. Biol. Chem. 278:12769–12778.

    Google Scholar 

  • Kaczmarek, L.K., A. Bhattacharjee, R. Desai, L. Gan, P. Song, C.A. von Hehn, M.D. Whim, and B. Yang. 2005. Regulation of the timing of MNTB neurons by short-term and long-term modulation of potassium channels. Hear Res. 206:133–145.

    Google Scholar 

  • Kang, D., C. Choe, and D. Kim. 2005. Thermosensitivity of the two-pore domain KC channels TREK-2 and TRAAK. J. Physiol. 564:103–116.

    Google Scholar 

  • Kavanaugh, M.P., R.S. Hurst, J. Yakel, M.D. Varnum, J.P. Adelman, and R.A. North. 1992. Multiple subunits of a voltage-dependent potassium channel contribute to the binding site for tetraethylammonium. Neuron 8:493–497.

    Google Scholar 

  • Kehl, S.J., C. Eduljee, D.C. Kwan, S. Zhang, and D. Fedida. 2002. Molecular determinants of the inhibition of human Kv1.5 potassium currents by external protons and Zn2C. J. Physiol. 541:9–24.

    Google Scholar 

  • Kerschensteiner, D., F. Monje, and M. Stocker. 2003. Structural determinants of the regulation of the voltage-gated potassium channel Kv2.1 by the modulatory alpha-subunit Kv9.3. J. Biol. Chem. 278:18154–18161.

    Google Scholar 

  • Kim, D. 2003. Fatty acid-sensitive two-pore domainKC channels. Trends Pharmacol. Sci. 24:648–654.

    Google Scholar 

  • Kiss, L., and S.J. Korn. 1998. Modulation of C-type inactivation by KC at the potassium channel selectivity filter. Biophys. J. 74:1840–1849.

    ADS  Google Scholar 

  • Kiss, L., J. LoTurco, and S.J. Korn. 1999. Contribution of the selectivity filter to inactivation in potassium channels. Biophys. J. 76:253–263.

    Google Scholar 

  • Klein, A., E. Boltshauser, J. Jen, and R.W. Baloh. 2004. Episodic ataxia type 1 with distal weakness: A novel manifestation of a potassium channelopathy. Neuropediatrics 35:147–149.

    Google Scholar 

  • Klemic, K.G., G.E. Kirsch, and S.W. Jones. 2001. U-type inactivation of Kv3.1 and Shaker potassium channels. Biophys. J. 81:814–826.

    Google Scholar 

  • Klemic, K.G., C.C. Shieh, G.E. Kirsch, and S.W. Jones. 1998. Inactivation of Kv2.1 potassium channels. Biophys. J. 74:1779–1789.

    ADS  Google Scholar 

  • Kobertz, W.R., and C. Miller. 1999. KC channels lacking the ‘tetramerization’ domain: Implications for pore structure. Nat. Struct. Biol. 6:1122–1125.

    Google Scholar 

  • Kobertz, W.R., C. Williams, and C. Miller. 2000. Hanging gondola structure of the T1 domain in a voltage-gated KC channel. Biochemistry 39:10347–10352.

    Google Scholar 

  • Kramer, J.W., M.A. Post, A.M. Brown, and G.E. Kirsch. 1998. Modulation of potassium channel gating by coexpression of Kv2.1 with regulatory Kv5.1 or Kv6.1 alpha-subunits. Am. J. Physiol. 274:C1501–C1510.

    Google Scholar 

  • Kuo, A., J.M. Gulbis, J.F. Antcliff, T. Rahman, E.D. Lowe, J. Zimmer, J. Cuthbertson, F.M. Ashcroft, T. Ezaki, and D.A. Doyle. 2003. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300:1922–1926.

    ADS  Google Scholar 

  • Li, M., Y.N. Jan, and L.Y. Jan. 1992. Specification of subunit assembly by the hydrophilic amino-terminal domain of the Shaker potassium channel. Science 257:1225–1230.

    ADS  Google Scholar 

  • Li, W., and R.W. Aldrich. 2004. Unique inner pore properties of BKchannels revealed by quaternary ammonium block. J. Gen. Physiol. 124:43–57.

    Google Scholar 

  • Li, W., L.K. Kaczmarek, and T.M. Perney. 2001. Localization of two high-threshold potassium channel subunits in the rat central auditory system. J. Comp. Neurol. 437:196–218.

    Google Scholar 

  • Lien, C.C., and P. Jonas. 2003. Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. J. Neurosci. 23:2058–2068.

    Google Scholar 

  • Liu, Y., M. Holmgren, M.E. Jurman, and G. Yellen. 1997. Gated access to the pore of a voltage-dependent KC channel. Neuron 19:175–184.

    Google Scholar 

  • Liu, Y., and R.H. Joho. 1998. A side chain in S6 influences both open-state stability and ion permeation in a voltage-gated KC channel. Pflugers Arch. 435:654–661.

    Google Scholar 

  • Liu, Y., M.E. Jurman, and G. Yellen. 1996. Dynamic rearrangement of the outer mouth of a KC channel during gating. Neuron 16:859–867.

    Google Scholar 

  • Long, S.B., E.B. Campbell, and R. MacKinnon. 2005a. Crystal structure of a mammalian voltage-dependent shaker family KC channel. Science 309:897–903.

    ADS  Google Scholar 

  • Long, S.B., E.B. Campbell, and R. MacKinnon. 2005b. Voltage sensor of Kv1.2: Structural basis of electromechanical coupling. Science 309:903–908.

    ADS  Google Scholar 

  • Loots, E., and E.Y. Isacoff. 1998. Protein rearrangements underlying slow inactivation of the Shaker KC channel. J. Gen. Physiol. 112:377–389.

    Google Scholar 

  • Lopes, C.M., P.G. Gallagher, M.E. Buck, M.H. Butler, and S.A. Goldstein. 2000. Proton block and voltage gating are potassium-dependent in the cardiac leak channel Kcnk3. J. Biol. Chem. 275:16969–16978.

    Google Scholar 

  • López-Barneo, J., T. Hoshi, S.H. Heinemann, and R.W. Aldrich. 1993. Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Receptors Channels 1:61–71.

    Google Scholar 

  • Lu, T., A.Y. Ting, J. Mainland, L.Y. Jan, P.G. Schultz, and J. Yang. 2001. Probing ion permeation and gating in a KC channel with backbone mutations in the selectivity filter. Nat. Neurosci. 4:239–246.

    Google Scholar 

  • Lu, Z. 2004. Mechanism of rectification in inward-rectifier KC channels. Annu. Rev. Physiol. 66:103–129.

    Google Scholar 

  • Lu, Z., A.M. Klem, and Y. Ramu. 2001. Ion conduction pore is conserved among potassium channels. Nature 413:809–813.

    ADS  Google Scholar 

  • Lu, Z., A.M. Klem, and Y. Ramu. 2002. Coupling between voltage sensors and activation gate in voltage-gated KC channels. J. Gen. Physiol. 120:663–676.

    Google Scholar 

  • MacKinnon, R., and G. Yellen. 1990. Mutations affecting TEA blockade and ion permeation in voltage-activated KC channels. Science 250:276–279.

    ADS  Google Scholar 

  • Malin, S.A., and J.M. Nerbonne. 2002. Delayed rectifier KC currents, IK, are encoded by Kv2 alpha-subunits and regulate tonic firing in mammalian sympathetic neurons. J. Neurosci. 22:10094–10105.

    Google Scholar 

  • Martina, M., J.H. Schultz, H. Ehmke, H. Monyer, and P. Jonas. 1998. Functional and molecular differences between voltage-gated KC channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. J. Neurosci. 18:8111–8125.

    Google Scholar 

  • Martina, M., G.L. Yao, and B.P. Bean. 2003. Properties and functional role of voltage dependent potassium channels in dendrites of rat cerebellar Purkinje neurons. J. Neurosci. 23:5698–5707.

    Google Scholar 

  • McCrossan, Z.A., A. Lewis, G. Panaghie, P.N. Jordan, D.J. Christini, D.J. Lerner, and G.W. Abbott. 2003. MinK-related peptide 2 modulates Kv2.1 and Kv3.1 potassium channels in mammalian brain. J. Neurosci. 23:8077–8091.

    Google Scholar 

  • McKay, B.E., M.L. Molineux, W.H. Mehaffey, and R.W. Turner. 2005. Kv1KC channels control Purkinje cell output to facilitate postsynaptic rebound discharge in deep cerebellar neurons. J. Neurosci. 25:1481–1492.

    Google Scholar 

  • Minor, D.L., Y.F. Lin, B.C. Mobley, A. Avelar, Y.N. Jan, L.Y. Jan, and J.M. Berger. 2000. The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel. Cell 102:657–670.

    Google Scholar 

  • Misonou, H., D.P. Mohapatra, E.W. Park, V. Leung, D. Zhen, K. Misonou, A.E. Anderson, and J.S. Trimmer. 2004. Regulation of ion channel localization and phosphorylation by neuronal activity. Nat. Neurosci. 7:711–718.

    Google Scholar 

  • Misonou, H., and J.S. Trimmer. 2004. Determinants of voltage-gated potassium channel surface expression and localization in Mammalian neurons. Crit. Rev. Biochem. Mol. Biol. 39:125–145.

    Google Scholar 

  • Mitterdorfer, J., and B.P. Bean. 2002. Potassium currents during the action potential of hippocampal CA3 neurons. J. Neurosci. 22:10106–10115.

    Google Scholar 

  • Morais-Cabral, J.H., Y. Zhou, and R. MacKinnon. 2001. Energetic optimization of ion conduction rate by the KC selectivity filter. Nature 414:37–42.

    ADS  Google Scholar 

  • Morozov, A., I.A. Muzzio, R. Bourtchouladze, N. Van-Strien, K. Lapidus, D. Yin, D.G. Winder, J.P. Adams, J.D. Sweatt, and E.R. Kandel. 2003. Rap1 couples cAMP signaling to a distinct pool of p42/44MAPK regulating excitability, synaptic plasticity, learning, and memory. Neuron 39:309–325.

    Google Scholar 

  • Murakoshi, H., G. Shi, R.H. Scannevin, and J.S. Trimmer. 1997. Phosphorylation of the Kv2.1 KC channel alters voltage-dependent activation. Mol. Pharmacol. 52:821–828.

    Google Scholar 

  • Nadal, M.S., A. Ozaita, Y. Amarillo, E. Vega-Saenz de Miera, Y. Ma, W. Mo, E.M. Goldberg, Y. Misumi, Y. Ikehara, T.A. Neubert, and B. Rudy. 2003. The CD26-related dipeptidyl aminopeptidase-like protein DPPX is a critical component of neuronal A-type KC channels. Neuron 37:449–461.

    Google Scholar 

  • Nakamura, T.Y., D.J. Pountney, A. Ozaita, S. Nandi, S. Ueda, B. Rudy, and W.A. Coetzee. 2001. A role for frequenin, a Ca2C -binding protein, as a regulator of Kv4 KC -currents. Proc. Natl. Acad. Sci. USA 98:12808–12813.

    ADS  Google Scholar 

  • Neyton, J., and C. Miller. 1988. Discrete Ba2C block as a probe of ion occupancy and pore structure in the high-conductance Ca2C -activated KC channel. J. Gen. Physiol. 92:569–586.

    Google Scholar 

  • Nimigean, C.M., J.S. Chappie, and C. Miller. 2003. Electrostatic tuning of ion conductance in potassium channels. Biochemistry 42:9263–9268.

    Google Scholar 

  • Nishida, M., and R. MacKinnon. 2002. Structural basis of inward rectification: Cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 A resolution. Cell 111:957–965.

    Google Scholar 

  • Niu, X., X. Qian, and K.L. Magleby. 2004. Linker-gating ring complex as passive spring and Ca2C -dependent machine for a voltage- and Ca2C -activated potassium channel. Neuron 42:745–756.

    Google Scholar 

  • Ottschytsch, N., A. Raes, D. Van Hoorick, and D.J. Snyders. 2002. Obligatory heterotetramerization of three previously uncharacterized Kv channel alpha-subunits identified in the human genome. Proc. Natl. Acad. Sci. USA 99:7986–7991.

    ADS  Google Scholar 

  • Papazian, D.M., T.L. Schwarz, B.L. Tempel, Y.N. Jan, and L.Y. Jan. 1987. Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237:749–753.

    ADS  Google Scholar 

  • Perozo, E., D.M. Cortes, and L.G. Cuello. 1999. Structural rearrangements underlying KC -channel activation gating. Science 285:73–78.

    Google Scholar 

  • Piskorowski, R., and R.W. Aldrich. 2002. Calcium activation of BKCa potassium channels lacking the calcium bowl and RCK domains. Nature 420: 499–502.

    ADS  Google Scholar 

  • Proks, P., J.F. Antcliff, and F.M. Ashcroft. 2003. The ligand-sensitive gate of a potassium channel lies close to the selectivity filter. EMBO Rep. 4:70–75.

    Google Scholar 

  • Puopolo, M., B.P. Bean, and E. Raviola. 2005. Spontaneous activity of isolated dopaminergic periglomerular cells of the main olfactory bulb. J. Neurophysiol. 94:3618–3627.

    Google Scholar 

  • Qi, S.Y., P.J. Riviere, J. Trojnar, J.L. Junien, and K.O. Akinsanya. 2003. Cloning and characterization of dipeptidyl peptidase 10, a new member of an emerging subgroup of serine proteases. Biochem. J. 373:179–189.

    Google Scholar 

  • Ramakers, G.M., and J.F. Storm. 2002. A postsynaptic transient KC current modulated by arachidonic acid regulates synaptic integration and threshold for LTP induction in hippocampal pyramidal cells. Proc. Natl. Acad. Sci. USA 99:10144–10149.

    ADS  Google Scholar 

  • Rettig, J., S.H. Heinemann, F. Wunder, C. Lorra, D.N. Parcej, J.O. Dolly, and O. Pongs. 1994. Inactivation properties of voltage-gated KC channels altered by presence of beta-subunit. Nature 369:289–294.

    ADS  Google Scholar 

  • Rhodes, K.J., K.I. Carroll, M.A. Sung, L.C. Doliveira, M.M. Monaghan, S.L. Burke, B.W. Strassle, L. Buchwalder, M. Menegola, J. Cao, W.F. An, and J.S. Trimmer. 2004. KChIPs and Kv4 alpha subunits as integral components of A-type potassium channels in mammalian brain. J. Neurosci. 24:7903–7915.

    Google Scholar 

  • Richter, T.A., G.A. Dvoryanchikov, N. Chaudhari, and S.D. Roper. 2004. Acidsensitive two-pore domain potassium (K2P) channels in mouse taste buds. J. Nurophysiol. 92:1928–1936.

    Google Scholar 

  • Rudy, B., A. Chow, D. Lau, Y. Amarillo, A. Ozaita, M. Saganich, H. Moreno, M.S. Nadal, R. Hernandez-Pineda, A. Hernandez-Cruz, A. Erisir, C. Leonard, and E. Vega-Saenz de Miera. 1999. Contributions of Kv3 channels to neuronal excitability. Ann. N.Y. Acad. Sci. 868:304–343.

    ADS  Google Scholar 

  • Rudy, B., and C.J. McBain. 2001. Kv3 channels:Voltage-gated KC channels designed for high-frequency repetitive firing. Trends Neurosci. 24:517–526.

    Google Scholar 

  • Sanguinetti, M.C., M.E. Curran, A. Zou, J. Shen, P.S. Spector, D.L. Atkinson, and M.T. Keating. 1996. Coassembly of KV LQT1 and minK (IsK) proteins to form cardiac IKs potassium channel. Nature 384:80–83.

    ADS  Google Scholar 

  • Scannevin, R.H., K. Wang, F. Jow, J. Megules, D.C. Kopsco, W. Edris, K.C. Carroll, Q. Lü, W. Xu, Z. Xu, A.H. Katz, S. Olland, L. Lin, M. Taylor, M. Stahl, K. Malakian, W. Somers, L. Mosyak, M.R. Bowlby, P. Chanda, and K.J. Rhodes. 2004. Two N-terminal domains of Kv4 KC channels regulate binding to and modulation by KChIP1. Neuron 41:587–598.

    Google Scholar 

  • Schoppa, N.E., and G.L. Westbrook. 1999. Regulation of synaptic timing in the olfactory bulb by an A-type potassium current. Nat. Neurosci. 2:1106–1113.

    Google Scholar 

  • Schreiber, M., A. Wei, A. Yuan, J. Gaut, M. Saito, and L. Salkoff. 1998. Slo3, a novel pH-sensitive KC channel from mammalian spermatocytes. J. Biol. Chem. 273:3509–3516.

    Google Scholar 

  • Schulteis, C.T., N. Nagaya, and D.M. Papazian. 1996. Intersubunit interaction between amino- and carboxyl-terminal cysteine residues in tetrameric shaker KC channels. Biochemistry 35:12133–12140.

    Google Scholar 

  • Seoh, S.A., D. Sigg, D.M. Papazian, and F. Bezanilla. 1996.Voltage-sensing residues in the S2 and S4 segments of the Shaker KC channel. Neuron 16:1159–1167.

    Google Scholar 

  • Sergeant, G.P., S. Ohya, J.A. Reihill, B. Perrino, G.C. Amberg, Y. Imaizumi, B. Horowitz, K.M. Sanders, and S.D. Koh. 2004. Regulation of Kv4.3 currents by Ca2C -calmodulin-dependent protein kinase II. Am. J. Physiol. Cell Physiol. 288:C304–C313.

    Google Scholar 

  • Sesti, F., G.W. Abbott, J. Wei, K.T. Murray, S. Saksena, P.J. Schwartz, S.G. Priori, D.M. Roden, A.L. George, and S.A. Goldstein. 2000. A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proc. Natl. Acad. Sci. USA 97:10613–10618.

    ADS  Google Scholar 

  • Sesti, F., and S.A. Goldstein. 1998. Single-channel characteristics of wild-type Iks channels and channels formed with two minK mutants that cause long QT syndrome. J. Gen. Physiol. 112:651–663.

    Google Scholar 

  • Shen, N.V., X. Chen, M.M. Boyer, and P.J. Pfaffinger. 1993. Deletion analysis of KC channel assembly. Neuron 11:67–76.

    Google Scholar 

  • Shen, N.V., and P.J. Pfaffinger. 1995. Molecular recognition and assembly sequences involved in the subfamily-specific assembly of voltage-gated KC channel subunit proteins. Neuron 14:625–633.

    Google Scholar 

  • Shepard, A.R., and J.L. Rae. 1999. Electrically silent potassium channel subunits from human lens epithelium. Am. J. Physiol. 277:C412–C424.

    Google Scholar 

  • Shibata, R., H. Misonou, C.R. Campomanes, A.E. Anderson, L.A. Schrader, L.C. Doliveira, K.I. Carroll, J.D. Sweatt, K.J. Rhodes, and J.S. Trimmer. 2003. A fundamental role for KChIPs in determining the molecular properties and trafficking of Kv4.2 potassium channels. J. Biol. Chem. 278:36445–36454.

    Google Scholar 

  • So, I., I. Ashmole, N.W. Davies, M.J. Sutcliffe, and P.R. Stanfield. 2001. The KC channel signature sequence of murine Kir2.1: Mutations that affect microscopic gating but not ionic selectivity. J. Physiol. 531:37–50.

    Google Scholar 

  • Sokolova, O., A. Accardi, D. Gutierrez, A. Lau, M. Rigney, and N. Grigorieff. 2003. Conformational changes in the C terminus of Shaker KC channel bound to the rat Kvbeta2-subunit. Proc. Natl. Acad. Sci. USA 100:12607–12612.

    ADS  Google Scholar 

  • Soler-Llavina, G.J., M. Holmgren, and K.J. Swartz. 2003. Defining the conductance of the closed state in a voltage-gated KC channel. Neuron 38:61–67.

    Google Scholar 

  • Song, P., Y. Yang, M. Barnes-Davies, A. Bhattacharjee, M. Hamann, I.D. Forsythe, D.L. Oliver, and L.K. Kaczmarek. 2005. Acoustic environment determines phosphorylation state of the Kv3.1 potassium channel in auditory neurons. Nat. Neurosci. 8:1335–1342.

    Google Scholar 

  • Starkus, J.G., L. Kuschel, M.D. Rayner, and S.H. Heinemann. 1997. Ion conduction through C-type inactivated Shaker channels. J. Gen. Physiol. 110:539–550.

    Google Scholar 

  • Swensen, A.M., and B.P. Bean. 2003. Ionic mechanisms of burst firing in dissociated Purkinje neurons. J. Neurosci. 23:9650–9663.

    Google Scholar 

  • Tai, K.K., and S.A. Goldstein. 1998. The conduction pore of a cardiac potassium channel. Nature 391:605–608.

    ADS  Google Scholar 

  • Tarasov, A., J. Dusonchet, and F. Ashcroft. 2004. Metabolic regulation of the pancreatic beta-cell ATP-sensitive KC channel: A pas de deux. Diabetes 53(Suppl 3):S113–S122.

    Google Scholar 

  • Trapani, J.G., P. Andalib, J.F. Consiglio, and S.J. Korn. 2006. Control of single channel conductance in the outer vestibule of the Kv2.1 potassium channel. J. Gen. Physiol. 128(2):231–246.

    Google Scholar 

  • Trapani, J.G., and S.J. Korn. 2003. Control of ion channel expression for patch clamp recordings using an inducible expression system in mammalian cell lines. BMC Neurosci. 4:15.

    Google Scholar 

  • Tristani-Firouzi, M., J. Chen, and M.C. Sanguinetti. 2002. Interactions between S4–S5 linker and S6 transmembrane domain modulate gating of HERG KC channels. J. Biol. Chem. 277:18994–19000.

    Google Scholar 

  • Tzounopoulos, T., H.R. Guy, S. Durell, J.P. Adelman, and J. Maylie. 1995. Min K channels form by assembly of at least 14 subunits. Proc. Natl. Acad. Sci. USA 92:9593–9597.

    ADS  Google Scholar 

  • Valverde, P., T. Kawai, and M.A. Taubman. 2005. Potassium channel-blockers as therapeutic agents to interfere with bone resorption of periodontal disease. J. Dent. Res. 84:488–499.

    Google Scholar 

  • Wang, K.W., K.K. Tai, and S.A. Goldstein. 1996. Min K residues line a potassium channel pore. Neuron 16:571–577.

    Google Scholar 

  • Wang, W., J. Xia, and R.S. Kass. 1998. Min K-KvLQT1 fusion proteins, evidence for multiple stoichiometries of the assembled IsK channel. J. Biol. Chem. 273:34069–34074.

    Google Scholar 

  • Wang, Z., J.C. Hesketh, and D. Fedida. 2000. A high-NaC conduction state during recovery from inactivation in the KC channel Kv1.5. Biophys. J. 79:2416–2433.

    Google Scholar 

  • Watanabe, S., D.A. Hoffman, M. Migliore, and D. Johnston. 2002. Dendritic KC channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons. Proc. Natl. Acad. Sci. USA 99:8366–8371.

    ADS  Google Scholar 

  • Wei, D.S., Y.A. Mei, A. Bagal, J.P. Kao, S.M. Thompson, and C.M. Tang. 2001. Compartmentalized and binary behavior of terminal dendrites in hippocampal pyramidal neurons. Science 293:2272–2275.

    ADS  Google Scholar 

  • Wood, M.J., and S.J. Korn. 2000. Two mechanisms of KC -dependent potentiation in Kv2.1 potassium channels. Biophys. J. 79:2535–2546.

    ADS  Google Scholar 

  • Xia, X.M., X. Zeng, and C.J. Lingle. 2002. Multiple regulatory sites in large conductance calcium-activated potassium channels. Nature 418:880–884.

    ADS  Google Scholar 

  • Xia, X.M., X. Zhang, and C.J. Lingle. 2004. Ligand-dependent activation of Slo family channels is defined by interchangeable cytosolic domains. J. Neurosci. 24:5585–5591.

    Google Scholar 

  • Yellen, G. 1998. The moving parts of voltage-gated ion channels. Q Rev. Biophys. 31:239–295.

    Google Scholar 

  • Yellen, G., D. Sodickson, T.Y. Chen, and M.E. Jurman. 1994. An engineered cysteine in the external mouth of a KC channel allows inactivation to be modulated by metal binding. Biophys. J. 66:1068–1075.

    Google Scholar 

  • Yifrach, O., and R. MacKinnon. 2002. Energetics of pore opening in a voltage-gated KC channel. Cell 111:231–239.

    Google Scholar 

  • Yuan, L.L., J.P. Adams, M. Swank, J.D. Sweatt, and D. Johnston. 2002. Protein kinase modulation of dendritic KC channels in hippocampus involves a mitogen-activated protein kinase pathway. J. Neurosci. 22:4860–4868.

    Google Scholar 

  • Zagotta, W.N., T. Hoshi, and R.W. Aldrich. 1990. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science 250:568–571.

    ADS  Google Scholar 

  • Zerangue, N., Y.N. Jan, and L.Y. Jan. 2000. An artificial tetramerization domain restores efficient assembly of functional Shaker channels lacking T1. Proc. Natl. Acad. Sci. USA 97:3591–3595.

    ADS  Google Scholar 

  • Zhang, M., M. Jiang, and G.N. Tseng. 2001. Min K-related peptide 1 associates with Kv4.2 and modulates its gating function: Potential role as beta subunit of cardiac transient outward channel? Circ. Res. 88:1012–1019.

    Google Scholar 

  • Zheng, J., and F.J. Sigworth. 1997. Selectivity changes during activation of mutant Shaker potassium channels. J. Gen. Physiol. 110:101–117.

    Google Scholar 

  • Zheng, J., and F.J. Sigworth. 1998. Intermediate conductances during deactivation of heteromultimeric Shaker potassium channels. J. Gen. Physiol. 112:457–474.

    Google Scholar 

  • Zhou, M., and R. MacKinnon. 2004. Amutant KcsA KC channel with altered conduction properties and selectivity filter ion distribution. J. Mol. Biol. 338:839–846.

    Google Scholar 

  • Zhou, M., J.H. Morais-Cabral, S. Mann, and R. MacKinnon. 2001a. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature 411:657–661.

    ADS  Google Scholar 

  • Zhou, Y., and R. MacKinnon. 2003. The occupancy of ions in the KC selectivity filter: Charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J. Mol. Biol. 333:965–975.

    Google Scholar 

  • Zhou, Y., J.H. Morais-Cabral, A. Kaufman, and R. MacKinnon. 2001b. Chemistry of ion coordination and hydration revealed by a KC channel-Fab complex at 2.0 A resolution. Nature 414:43–48.

    ADS  Google Scholar 

  • Zilberberg, N., N. Ilan, R. Gonzalez-Colaso, and S.A. Goldstein. 2000. Opening and closing of KCNKO potassium leak channels is tightly regulated. J. Gen. Physiol. 116:721–734.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Korn, S.J., Trapani, J.G. (2007). Voltage-Gated Potassium Channels. In: Chung, SH., Andersen, O.S., Krishnamurthy, V. (eds) Biological Membrane Ion Channels. Biological And Medical Physics Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/0-387-68919-2_4

Download citation

Publish with us

Policies and ethics