Skip to main content

Voltage-Gated Ion Channels

  • Chapter
Biological Membrane Ion Channels

Part of the book series: Biological And Medical Physics Biomedical Engineering ((BIOMEDICAL))

Abstract

The bit of information in nerves is the action potential, a fast electrical transient in the transmembrane voltage that propagates along the nerve fiber. In the resting state, the membrane potential of the nerve fiber is about ยก 60 mV (negative inside with respect to the extracellular solution). When the action potential is initiated, the membrane potential becomes less negative and even reverses sign (overshoot) within a millisecond and then goes back to the resting value in about 2 ms, frequently after becoming even more negative than the resting potential. In a landmark series of papers, Hodgkin and Huxley studied the ionic events underlying the action potential and were able to describe the conductances and currents quantitatively with their classical equations (Hodgkin and Huxley, 1952). The generation of the rising phase of the action potential was explained by a conductance to NaC ions that increases as the membrane potential is made more positive. This is because, as the driving force for the permeating ions (NaC) was in the inward direction, more NaC ions come into the nerve and make the membrane more positive initiating a positive feedback that depolarizes the membrane even more. This positive feedback gets interrupted by the delayed opening of another voltage-dependent conductance that is K-selective. The driving force for KC ions is in the opposite direction of NaC ions, thus KC outward flow repolarizes the membrane to its initial value. The identification and characterization of the voltage-dependent NaC and KC conductances was one of the major contributions of Hodgkin and Huxley. In their final paper of the series, they even proposed that the conductance was the result of increased permeability in discrete areas under the control of charges or dipoles that respond to the membrane electric field. This was an insightful prediction of ion channels and gating currents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggarwal, S.K., and R. MacKinnon. 1996. Contribution of the S4 segment to gating charge in the Shaker KC channel. Neuron 16:1169โ€“1177.

    Google Scholarย 

  • Agnew, W.S., S.R. Levinson, J.S. Brabson, and M.A. Raftery. 1978. Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel from Electrophorus electricus electroplax membranes. Proc. Natl. Acad. Sci. USA 75:2602โ€“2610.

    ADSย  Google Scholarย 

  • Ahern, C.A., and R. Horn. 2004a. Specificity of charge-carrying residues in the voltage sensor of potassium channels. J. Gen. Physiol. 123:205โ€“216.

    Google Scholarย 

  • Ahern, C.A., and R. Horn. 2004b. Stirring up controversy with a voltage sensor paddle. Trends Neurosci. 27(6):303โ€“307.

    Google Scholarย 

  • Ahern, C.A., and R. Horn. 2005. Focused electric field across the voltage sensor of potassium channels. Neuron 48:25โ€“29.

    Google Scholarย 

  • Almers, W. 1978. Gating currents and charge movements in excitable membranes. Rev. Physiol. Biochem. Pharmacol. 82:96โ€“190.

    Google Scholarย 

  • Armstrong, C.M., and F. Bezanilla. 1973. Currents related to movement of the gating particles of the sodium channels. Nature 242:459โ€“461.

    ADSย  Google Scholarย 

  • Armstrong, C.M., and F. Bezanilla. 1977. Inactivation of the sodium channel. II. Gating current experiments. J. Gen. Physiol. 70:567โ€“590.

    Google Scholarย 

  • Asamoah, O.K, B. Chanda, and F. Bezanilla. 2004. A spectroscopic survey of gating induced environmental changes in the Shaker potassium channel. Biophys. J. 86:432a.

    Google Scholarย 

  • Asamoah, O.K., J.P. Wuskell, L.M. Loew, and F. Bezanilla. 2003. A fluorometric approach to local electric field measurements in a voltage-gated ion channel. Neuron 37:85โ€“97.

    Google Scholarย 

  • Baker, O.S., H.P. Larsson, L.M. Mannuzzu, and E.Y. Isacoff. 1998. Three transmembrane conformation and sequence-dependent displacement of the S4 domain in Shaker KC channel gating. Neuron 20:1283โ€“1294.

    Google Scholarย 

  • Bezanilla, F. 2000. The voltage sensor in voltage-dependent channels. Phys. Rev. 80:555โ€“592.

    Google Scholarย 

  • Bezanilla, F. 2002. Perspective: Voltage sensor movements. J. Gen. Physiol. 120:465โ€“473.

    Google Scholarย 

  • Bezanilla, F., and E. Perozo. 2003. The voltage sensor and the gate in ion channels. In: Advances in Protein Chemistry, Vol. 63. D. Rees, editor. Elsevier Science, New York.

    Google Scholarย 

  • Bezanilla, F., E. Perozo, and E. Stefani. 1994. Gating of Shaker KC channels. II. The components of gating currents and a model of channel activation. Biophys. J. 66:1011โ€“1021.

    Google Scholarย 

  • Blaustein, R.O., P.A. Cole, C. Williams, and C. Miller. 2000. Tethered blockers as molecular โ€˜tape measuresโ€™ for a voltage-gated KC channel. Nat. Struct. Biol. 7:309โ€“311.

    Google Scholarย 

  • Blunck R., and F. Bezanilla. 2002. Fluorescence recordings of a low number of voltage gated KC channels. Biophys. J. 82:267a.

    Google Scholarย 

  • Blunck R., J. Cordero, L. Cuello, E. Perozo, and F. Bezanilla. 2006. Detection of the opening of the bundle crossing in KcsA with fluorescence lifetime spectroscopy reveals the existence of two gates for ion conduction (submitted).

    Google Scholarย 

  • Blunck, R., D.M. Starace, A.M. Correa, and F. Bezanilla. 2004. Detecting rearrangements of Shaker and NaChBac in real-time with fluorescence spectroscopy in patch-clamped mammalian cells. Biophys. J. 86:3966โ€“3980.

    Google Scholarย 

  • Blunck, R., J.L. Vazquez-Ibar, Y.S. Liu, E. Perozo, and F. Bezanilla. 2003. Fluorescence measurements of KcsA channels in artificial bilayers. Biophys. J. 84(2, Pt 2):124aโ€“125a.

    Google Scholarย 

  • Borisenko, V., T. Lougheed, J. Hesse, E. Fureder-Kitzmuller, N. Fertig, J.C. Behrends, G.A. Woolley, G.J. Schutz. 2003. Simultaneous optical and electrical recording of single gramicidin channels. Biophys. J. 84(1):612โ€“622.

    ADSย  Google Scholarย 

  • Cantor, C.R., and P.R. Schimmel. 1980. Biophysical Chemistry. Part II. Techniques for the Study of Biological Structure and Function. W.H. Freeman and Co., New York.

    Google Scholarย 

  • Caterall, W.A. 1986. Molecular properties of voltage-sensitive sodium channels. Annu. Rev. Biochem. 55:953โ€“985.

    Google Scholarย 

  • Cha, A., and F. Bezanilla. 1997. Characterizing voltage-dependent conformational changes in the Shaker KC channel with fluorescence. Neuron 19:1127โ€“1140.

    Google Scholarย 

  • Cha, A., and F. Bezanilla. 1998. Structural implications of fluorescence quenching in the Shaker KC channel. J. Gen. Physiol. 112:391โ€“408.

    Google Scholarย 

  • Cha, A., P.C. Ruben, A.L. George, E. Fujimoto, and F. Bezanilla. 1999a. Voltage sensors in domains III and IV, but not I and II, are immobilized by NaC channel fast inactivation. Neuron 22: 73โ€“87.

    Google Scholarย 

  • Cha, A., G. Snyder, P.R. Selvin, and F. Bezanilla. 1999b. Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature 402:809โ€“813.

    ADSย  Google Scholarย 

  • Chanda, B., O.K. Asamoah, and F. Bezanilla. 2004. Coupling interactions between voltage sensors of the sodium channel as revealed by site-specific measurements. J. Gen. Physiol. 123:217โ€“230.

    Google Scholarย 

  • Chanda, B., O.K. Asamoah, R. Blunck, B. Roux, and F. Bezanilla. 2005. Gating charge displacement in voltage-gated channels involves limited transmembrane movement. Nature 436:852โ€“856.

    ADSย  Google Scholarย 

  • Chanda, B., and F. Bezanilla. 2002. Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. J. Gen. Physiol. 120:629โ€“645.

    Google Scholarย 

  • Chapman, M.L., and A.M.J. VanDongen. 2005. K channel subconductance levels result from heteromeric pore conformations. J. Gen. Physiol. 126:87โ€“103.

    Google Scholarย 

  • Cohen, B.E., M. Grabe, and L.Y. Jan. 2003. Answers and questions from KvAP structure. Neuron,39:395โ€“400.

    Google Scholarย 

  • Conti, F., and W. Stuhmer. 1989. Quantal charge redistribution accompanying the structural transitions of sodium channels. Eur. Biophys. J. 17:53โ€“59.

    Google Scholarย 

  • Cordero-Marales, J.F., L.G. Cuello, Y. Zhao, V. Jogini, D.M. Cortes, B. Roux, and E. Perozo. 2006. Molecular determinants of gating at the potassium-channel selectivity filter. Nature Struct. Mol. Biol. 13:311โ€“318.

    Google Scholarย 

  • Cuello, L.G., M. Cortes, and E. Perozo. 2004. Molecular architecture of the KvAP voltage dependent KC channel in a lipid bilayer. Science 306:491โ€“495.

    ADSย  Google Scholarย 

  • Durell, S.R., and H.R. Guy. 1992. Atomic scale structure and functional models of voltage-gated potassium channels. Biophys. J. 62:238โ€“250.

    ADSย  Google Scholarย 

  • Durell, S.R., I.H. Shrivastava, and H.R. Guy. 2004. Models of the structure and voltage-gating mechanism of the Shaker KC channel. Biophys. J. 87:2116โ€“2130.

    ADSย  Google Scholarย 

  • Fernandez, J.M., F. Bezanilla, and R.E. Taylor. 1982. Effect of chloroform on the movement of charges within the nerve membrane. Nature 297:150โ€“152.

    ADSย  Google Scholarย 

  • Freites, J.A., D.J. Tobias, G. von Heijne, and S.H. White. 2005. Interface connections of a transmembrane voltage sensor. PNAS 102:15059โ€“15064.

    ADSย  Google Scholarย 

  • Gandhi, C.S., and E.Y. Isacoff. 2002. Molecular models of voltage sensing. J. Gen. Physiol. 120:455โ€“463.

    Google Scholarย 

  • Glauner, K.S., L.M. Mannuzzu, C.S. Gandhi, and E.Y. Isacoff. 1999. Spectroscopic mapping of voltage sensor movements in the Shaker potassium channel. Nature 402:813โ€“817.

    ADSย  Google Scholarย 

  • Gonzalez, C., F.J. Morera, E. Rosenmann, and R. Latorre. 2005. S3b amino acid residues do not shuttle across the bilayer in voltage-gated Shaker KC channels. Proc. Natl. Acad. Sci. 102:5020โ€“5025.

    ADSย  Google Scholarย 

  • Gonzalez, C., E. Rosenman, F. Bezanilla, O. Alvarez, and R. Latorre. 2001. Periodic perturbations in Shaker KC channel gating kinetics by deletions in the S3-S4 linker. Proc. Natl. Acad. Sci. 98:9617โ€“9623.

    ADSย  Google Scholarย 

  • Hamill, O.P., A. Marty, E. Neher, B. Sackmann, and F.J. Sigworth. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391:85โ€“100.

    Google Scholarย 

  • Hirschberg, B., A. Rovner, M. Lieberman, and J. Patlak. 1996. Transfer of twelve charges is needed to open skeletal muscle NaC channels. J. Gen. Physiol. 106:1053โ€“1068.

    Google Scholarย 

  • Hodgkin, A.L., and A.F. Huxley. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500โ€“544.

    Google Scholarย 

  • Horn, R., S. Ding, and H.J. Gruber. 2000. Immobilizing the moving parts of voltage-gated ion channels. J. Gen. Physiol. 116:461โ€“476.

    Google Scholarย 

  • Horrigan, F.T., J. Cui, and R.W. Aldrich. 1999. Allosteric voltage gating of potassium channels I:mSlo ionic currents in absence of Ca2C. J.Gen.Physiol. 114:277โ€“304.

    Google Scholarย 

  • Hoshi, T., W.N. Zagotta, and R.W. Aldrich. 1990. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250:533โ€“538.

    ADSย  Google Scholarย 

  • Islas, L.D., and F.J. Sigworth. 2001. Electrostatics and the gating pore of Shaker potassium channels. J. Gen. Physiol. 117:69โ€“89.

    Google Scholarย 

  • Jiang, Y., A. Lee, J. Chen, M. Cadene, B.T. Chait, and R. MacKinnon. 2002a. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515โ€“522.

    ADSย  Google Scholarย 

  • Jiang, Y., A. Lee, J. Chen, M. Cadene, B.T. Chait, and R. MacKinnon. 2002b. The open pore conformation of potassium channels. Nature 417:523โ€“526.

    ADSย  Google Scholarย 

  • Jiang, Y., A. Lee, J. Chen, V. Ruta, M. Cadene, B.T. Chait, and R. MacKinnon. 2003a. X-ray structure of a voltage-dependent K(C) channel. Nature 423:33โ€“41.

    ADSย  Google Scholarย 

  • Jiang, Y., V. Ruta, J. Chen, A. Lee, and R. MacKinnon. 2003b. The principle of gating charge movement in a voltage-dependent KC channel. Nature 423:42โ€“48.

    ADSย  Google Scholarย 

  • Jiang, Q.-X., D.-N. Wang, and R. MacKinnon. 2004. Electron microscopic analysis of KvAP voltage dependent KC channel in an open conformation. Nature 430:806โ€“810.

    ADSย  Google Scholarย 

  • Keynes, R.D., and E. Rojas. 1974. Kinetics and steady-state properties of the charged system controlling sodium conductance in the squid giant axon. J. Physiol (Lond.) 239:393โ€“434.

    Google Scholarย 

  • Kuzmenkin, A., F. Bezanilla, and A.M. Correa. 2004. Gating of the bacterial sodium channel NaChBac: Voltage dependent charge movement and gating currents. J. Gen. Physiol. 124:349โ€“356.

    Google Scholarย 

  • Laine, M., M.C. Lin, J.P. Bannister, W.R. Silverman, A.F. Mock, B. Roux, and D.M. Papazian. 2003. Atomic proximity between S4 segment and pore domain in Shaker potassium channels. Neuron 39:467โ€“481.

    Google Scholarย 

  • Larsson, H.P., O.S. Baker, D.S. Dhillon, and E.Y. Isacoff. 1996. Transmembrane movement of the Shaker KC channel S4. Neuron 16:387โ€“397.

    Google Scholarย 

  • Lee, H.C., J.M. Wang, and K.J. Swartz. 2003. Interaction between extracellular Hanatoxin and the resting conformation of the voltage sensor paddle in KV channels. Neuron 40(3):527โ€“536.

    Google Scholarย 

  • Li-Smerin, Y., D.H. Hackos, and K.J. Swartz. 2000. Alpha-helical structural elements within the voltage-sensing region domains of a KC channel. J. Gen. Physiol. 115:33โ€“50.

    Google Scholarย 

  • Long, S.B., E.B. Campbell, and R. MacKinnon. 2005a. Crystal structure of a mammalian voltage-dependent Shaker family KC channel. Science 309:897โ€“903.

    ADSย  Google Scholarย 

  • Long, S.B., E.B. Campbell, and R. MacKinnon. 2005b. Structural basis of electromechanical coupling. Science 309:903โ€“908.

    ADSย  Google Scholarย 

  • Loots, E., and E.Y. Isacoff. 1998. Protein rearrangements underlying slow inactivation of the Shaker KC channel. J. Gen. Physiol. 112:377โ€“389.

    Google Scholarย 

  • Mannuzzu, L.M., and E.Y. Isacoff. 2000. Independence and cooperativity in rearrangements of a potassium channel voltage sensor revealed by single subunit fluorescence. J. Gen. Physiol. 115:257โ€“268.

    Google Scholarย 

  • Mannuzzu, L.M., M.M. Moronne, and E.Y. Isacoff. 1996. Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271:213โ€“216.

    ADSย  Google Scholarย 

  • Monks, S.A., D.J. Needleman, and C. Miller. 1999. Helical structure and packing orientation of the S2 segment in the Shaker KC channel. J. Gen. Physiol. 113:415โ€“423.

    Google Scholarย 

  • Noceti, F., P. Baldelli, X. Wei, N. Qin, L. Toro, L. Birnbaumer, and E. Stefani. 1996. Effective gating charges per channel in voltage-dependent KC and Ca2C channel. J. Gen. Physiol. 108:143โ€“155.

    Google Scholarย 

  • Noda, M., S. Shimizu, T. Tanabe, T. Takai, T. Kayano, T. Ikeda, H. Takahashi, H. Nakayama, Y. Kanaoka, and N. Minamino. 1984. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312:121โ€“127.

    ADSย  Google Scholarย 

  • Papazian, D.M., X.M. Shao, S.-A. Seoh, A.F. Mock, Y. Huang, and D.H.Weinstock. 1995. Electrostatic interactions of S4 voltage sensor in Shaker KC channel. Neuron 14:1293โ€“1301.

    Google Scholarย 

  • Parsegian, A. 1969. Energy of an ion crossing a low dielectric membrane: Solutions to four relevant electrostatic problems. Nature 221:844โ€“846.

    ADSย  Google Scholarย 

  • Perozo, E., M. Cortes, and L.G. Cuello. 1999. Structural rearrangements underlying KC -channel activation gating. Science 285:73โ€“78.

    Google Scholarย 

  • Perozo, E., R. MacKinnon, F. Bezanilla, and E. Stefani. 1993. Gating currents from a non-conducting mutant reveal open-closed conformations in Shaker KC channels. Neuron 11:353โ€“358.

    Google Scholarย 

  • Phillips, L.R., M. Milescu, Y. Li-Smerin, J.A. Midell, J.I. Kim, and K.J. Swartz. 2005. Voltage sensor activation with a tarantula toxin as cargo. Nature 436:857โ€“860.

    ADSย  Google Scholarย 

  • Posson, D.J., P. Ge, C. Miller, F. Bezanilla, and P.R. Selvin. 2005. Small vertical movement of a KC channel voltage sensor measured with luminescence energy transfer. Nature 436:848โ€“851.

    ADSย  Google Scholarย 

  • Richardson, J., P. Ge, P.R. Selvin, F. Bezanilla, and D.M. Papazian. 2006. Orientation of the voltage sensor relative to the pore differs in prokaryotic and eukaryotic voltage-dependent potassium channels [abstract]. Biophys. J.

    Google Scholarย 

  • Richardson, J., D.M. Starace, F. Bezanilla, and A.M. Correa. 2005. Scanning NaCh-Bac topology using LRET [abstract]. Biophys. J. Roux, B. 1997. Influence of the membrane potential on the free energy of an intrinsic protein. Biophys. J. 73:2980โ€“2989.

    Google Scholarย 

  • Ruta, V., J. Chen, and R. MacKinnon. 2005. Calibrated measurement of gatingcharge arginine displacement in the KvAP voltage-dependent KC channel. Cell 123:463โ€“475.

    Google Scholarย 

  • Santacruz-Toloza, L., Y. Huang, S.A. John, and D.M. Papazian. 1994. Glycosylation of Shaker potassium channel protein in insect cell culture and in Xenopus oocytes. Biochemistry 33:5607โ€“5613.

    Google Scholarย 

  • Schoppa, N.E., K. McCormack, M.A. Tanouye, and F.J. Sigworth. 1992. The size of gating charge in wild-type and mutant Shaker potassium channels. Science 255:1712โ€“1715.

    ADSย  Google Scholarย 

  • Schoppa, N.E., and F.J. Sigworth. 1998. Activation of Shaker potassium channels. III. An activation gating model for wild-type and V2 mutant channel. J. Gen. Physiol. 111:313โ€“342.

    Google Scholarย 

  • Selvin, P.R. 2002. Principles and biophysical applications of luminescent lanthanide probes. Annu. Rev. Biophys. Biomol. Struct. 31:275โ€“302.

    Google Scholarย 

  • Seoh, S.-A., D. Sigg, D.M. Papazian, and F. Bezanilla. 1996.Voltage-sensing residues in the S2 and S4 segments of the Shaker KC channel. Neuron 16:1159โ€“1167.

    Google Scholarย 

  • Sigg, D., and F. Bezanilla. 1997. Total charge movement per channel: The relation between gating displacement and the voltage sensitivity of activation. J. Gen. Physiol. 109:27โ€“39.

    Google Scholarย 

  • Sigg, D., F. Bezanilla, and E. Stefani. 2003. Fast gating in the Shaker KC channel and the energy landscape of activation. PNAS 100:7611โ€“7615.

    ADSย  Google Scholarย 

  • Sigg, D., H. Qian, and F. Bezanilla. 1999. Kramersโ€™ diffusion theory applied to gating kinetics of voltage dependent channels. Biophys. J. 76:782โ€“803.

    Google Scholarย 

  • Sigg, D., E. Stefani, and F. Bezanilla. 1994. Gating current noise produced by elementary transition in Shaker potassium channels. Science 264:578โ€“582.

    ADSย  Google Scholarย 

  • Sonnleitner, A., L.M. Mannuzzu, S. Terakawa, and E.Y. Isacoff. 2002. Structural rearrangements in single ion channels detected optically in living cells. Proc. Natl. Acad. Sci. USA 99(20):12759โ€“12764.

    ADSย  Google Scholarย 

  • Starace, D.M., and F. Bezanilla. 2001. Histidine scanning mutagenesis of basic residues of the S4 segment of the Shaker KC channel. J. Gen. Physiol. 117:469โ€“490.

    Google Scholarย 

  • Starace, D.M., and F. Bezanilla. 2004. A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427:548โ€“552.

    ADSย  Google Scholarย 

  • Starace, D.M., P.R. Selvin, and F. Bezanilla. 2002. Resonance energy transfer measurements on transmembrane motion of Shaker KC channel voltage sensing region. Biophys. J. 82:174a.

    Google Scholarย 

  • Starace, D.M., E. Stefani, and F. Bezanilla. 1997.Voltage-dependent proton transport by the voltage sensor of the Shaker KC channel. Neuron 19:1319โ€“1327.

    Google Scholarย 

  • Swartz, K.J. 2004. Towards a structural view of gating in potassium channels. Nat. Rev. Neurosci. 5:905โ€“916.

    MathSciNetย  Google Scholarย 

  • Tempel, T.M., D.M. Papazian, T.L. Schwarz, Y.N. Jan, and L.Y. Jan. 1987. Sequence of a probable potassium channel component encoded at Shaker locus in Drosophila. Science 237:770โ€“775.

    ADSย  Google Scholarย 

  • Tiwari-Woodruff, S.K., C.T. Schulteis, A.F. Mock, and D.M. Papazian. 1997. Electrostatic interactions between transmembrane segments mediate folding of Shaker KC channel subunits. Biophys. J. 72:1489โ€“1500.

    Google Scholarย 

  • Tombola, F., M.M. Pathak, and E.Y. Isacoff. 2005. Voltage-sensing arginines in a potassium channel permeate and occlude cation-selective pores. Neuron45:379โ€“388.

    Google Scholarย 

  • Treptow, W., B. Maigret, C. Chipot, and M. Tarek. 2004. Coupled motions between the pore and voltage-sensor domains: A model for Shaker B, a voltage-gated potassium channel. Biophys. J. 87:2365โ€“2379.

    ADSย  Google Scholarย 

  • Vandenberg, C.A., and F. Bezanilla. 1991. A sodium channel model of gating based on single channel, macroscopic ionic and gating currents in the squid giant axon. Biophys. J. 60:1511โ€“1533.

    Google Scholarย 

  • Webster, S.M., D. Del Camino, J.P. Dekker, and G. Yellen. 2004. Intracellular gate opening in Shaker KC channels defined by high-affinity metal bridges. Nature428:864โ€“868.

    ADSย  Google Scholarย 

  • Yang, N., A.L. George, and R. Horn. 1996. Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16:113โ€“122.

    Google Scholarย 

  • Yang, N., and R. Horn. 1995. Evidence for voltage-dependent S4 movement in sodium channels. Neuron 15:213โ€“218.

    Google Scholarย 

  • Yellen, G. 1998. The moving parts of voltage-gated ion channels. Quart. Rev. Biophys. 31:239โ€“295.

    Google Scholarย 

  • Yusaf, S.P., D. Wray, and A. Sivaprasadarao. 1996. Measurement of the movement of the S4 segment during activation of a voltage-gated potassium channel. Pflugers Arc. Eur. J. Physiol. 433:91โ€“97.

    Google Scholarย 

  • Zagotta, W.N., T. Hoshi, J. Dittman, and R. Aldrich. 1994. Shaker potassium channel gating III: Evaluation of kinetic models for activation. J. Gen. Physiol. 103:321โ€“362.

    Google Scholarย 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

ยฉ 2007 Springer

About this chapter

Cite this chapter

Bezanilla, F. (2007). Voltage-Gated Ion Channels. In: Chung, SH., Andersen, O.S., Krishnamurthy, V. (eds) Biological Membrane Ion Channels. Biological And Medical Physics Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/0-387-68919-2_3

Download citation

Publish with us

Policies and ethics