Skip to main content

Molecular Dynamics Simulation Approaches to K Channels

  • Chapter
  • 1843 Accesses

Part of the book series: Biological And Medical Physics Biomedical Engineering ((BIOMEDICAL))

Abstract

Ion channels are proteins that form pores of nanoscopic dimensions in cell membranes. As a consequence of advance in protein crystallography we now know the three-dimensional structures of a number of ion channels. However, X-ray diffraction techniques yield an essentially static (time- and space-averaged) structure of an ion channel, in an environment often somewhat distantly related to that which the protein experiences when in a cell membrane. Thus, additional techniques are required to fully understand the relationship between channel structure and function. Potassium (K) channels (Yellen, 2002) provide an opportunity to explore the relationship between membrane protein structure, dynamics, and function. Furthermore, K channels are of considerable physiological and biomedical interest. They regulate K+ ion flux across cell membranes. K channel regulation is accomplished by a conformational change that allows the protein to switch between two alternative (closed vs. open) conformations, a process known as gating. Gating is an inherently dynamic process that cannot be fully characterized by static structures alone.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, T.W., O.S. Andersen, and B. Roux. 2004. On the importance of atomic fluctuations, protein flexibility, and solvent in ion permeation. J. Gen. Physiol. 124:679–690.

    Article  Google Scholar 

  • Allen, T.W., S. Kuyucak, and S.H. Chung. 1999. Molecular dynamics study of the KcsA potassium channel. Biophys. J. 77:2502–2516.

    Article  Google Scholar 

  • Amadei, A., A.B.M. Linssen, and H.J.C. Berendsen. 1993. Essential dynamics of proteins. Proteins Struc. Funct. Genet. 17:412–425.

    Article  Google Scholar 

  • Antcliffe, J.F., S. Haider, P. Proks, M.S.P. Sansom, and F.M. Ashcroft. 2005. Functional analysis of a structural model of the ATP-binding site of the KATP channel Kir6.2 subunit. EMBO J. 24:229–239.

    Article  Google Scholar 

  • Åqvist, J., and V. Luzhkov. 2000. Ion permeation mechanism of the potassium channel. Nature 404:881–884.

    Article  ADS  Google Scholar 

  • Arinaminpathy, Y., P.C. Biggin, I.H. Shrivastava, and M.S.P. Sansom. 2003. A prokaryotic glutamate receptor: Homology modelling and molecular dynamics simulations of GluR0. FEBS Lett. 553:321–327.

    Article  Google Scholar 

  • Ash, W.L., M.R. Zlomislic, E.O. Oloo, and D.P. Tieleman. 2004. Computer simulations of membrane proteins. Biochim. Biophys. Acta 1666:158–189.

    Article  Google Scholar 

  • Beckstein, O., P.C. Biggin, P.J. Bond, J.N. Bright, C. Domene, A. Grottesi, J. Holyoake, and M.S.P. Sansom. 2003. Ion channel gating: Insights via molecular simulations. FEBS Lett. 555:85–90.

    Article  Google Scholar 

  • Beckstein, O., P.C. Biggin, and M.S.P. Sansom. 2001. A hydrophobic gating mechanism for nanopores. J. Phys. Chem. B 105:12902–12905.

    Article  Google Scholar 

  • Beckstein, O., and M.S.P. Sansom. 2003. Liquid–vapor oscillations of water in hydrophobic nanopores. Proc. Natl. Acad. Sci. USA 100:7063–7068.

    Article  ADS  Google Scholar 

  • Beckstein, O., and M.S.P. Sansom. 2004. The influence of geometry, surface character and flexibility on the permeation of ions and water through biological pores. Phys. Biol. 1:42–52.

    Article  ADS  Google Scholar 

  • Beckstein, O., K. Tai, and M.S.P. Sansom. 2004. Not ions alone: Barriers to ion permeation in nanopores and channels. J. Am. Chem. Soc. 126:14694–14695.

    Article  Google Scholar 

  • Berendsen, H.J.C., J.P.M. Postma, W.F. van Gunsteren, A. DiNola, and J.R. Haak. 1984. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81:3684–3690.

    Article  ADS  Google Scholar 

  • Bernèche, S., and B. Roux. 2000. Molecular dynamics of the KcsA K+ channel in a bilayer membrane. Biophys. J. 78:2900–2917.

    Article  Google Scholar 

  • Bernèche, S., and B. Roux. 2001. Energetics of ion conduction through the K+ channel. Nature 414:73–77.

    Article  ADS  Google Scholar 

  • Bernèche, S., and B. Roux. 2005. A gate in the selectivity filter of potassium channels. Structure 13:591–600.

    Article  Google Scholar 

  • Biggin, P.C., I.H. Shrivastava, G.R. Smith, and M.S.P. Sansom. 2001. Nonequilibrium molecular dynamics study of KcsA gating. Biophys. J. 80:514.

    Google Scholar 

  • Bostick, D.L., and M.L. Berkowitz. 2003. The implementation of slab geometry for membrane-channel molecular dynamics simulations. Biophys. J. 85:97–107.

    Article  Google Scholar 

  • Bright, J.N., and M.S.P. Sansom. 2004. The Kv channel S6 helix as a molecular switch: Simulation studies. IEE Proc. Nanobiotechnol. 151:17–27.

    Article  Google Scholar 

  • Bright, J.N., I.H. Shrivastava, F.S. Cordes, and M.S.P. Sansom. 2002. Conformational dynamics of helix S6 from Shaker potassium channel: Simulation studies. Biopolymers 64:303–313.

    Article  Google Scholar 

  • Camino, D.D., and G. Yellen. 2001. Tight steric closure at the intracellular activation gate of a voltage-gated K+ channel. Neuron 32:649–656.

    Article  Google Scholar 

  • Capener, C.E., H.J. Kim, Y. Arinaminpathy, and M.S.P. Sansom. 2002. Ion channels: Structural bioinformatics and modelling. Human Mol. Genet. 11:2425–2433.

    Article  Google Scholar 

  • Capener, C.E., P. Proks, F.M. Ashcroft, and M.S.P. Sansom. 2003. Filter flexibility in a mammalian K channel: Models and simulations of Kir6.2 mutants. Biophys. J. 84:2345–2356.

    Article  Google Scholar 

  • Capener, C.E., and M.S.P. Sansom. 2002. MD Simulations of a K channel model— sensitivity to changes in ions, waters and membrane environment. J. Phys. Chem. B 106:4543–4551.

    Article  Google Scholar 

  • Capener, C.E., I.H. Shrivastava, K.M. Ranatunga, L.R. Forrest, G.R. Smith, and M.S.P. Sansom. 2000. Homology modelling and molecular dynamics simulation studies of an inward rectifier potassium channel. Biophys. J. 78:2929–2942.

    Article  Google Scholar 

  • Chen, C.T., and B. Rost. 2002. State-of-the-art in membrane protein prediction. Appl. Bioinformatics 1:21–35.

    Google Scholar 

  • Chothia, C. 1984. Principles that determine the structure of proteins. Ann. Rev. Biochem. 53:537–572.

    Article  Google Scholar 

  • Daidone, I., A. Amadei, D. Roccatano, and A. Di Nola. 2003. Molecular dynamics simulation of protein folding by essential dynamics sampling: Folding landscape of horse heart cytochrome c. Biophys. J. 85:2865–2871.

    Article  Google Scholar 

  • Daidone, I., D. Roccatano, and S. Hayward. 2004. Investigating the accessibility of the closed domain conformation of citrate synthase using essential dynamics sampling. J. Mol. Biol. 339:515–525.

    Article  Google Scholar 

  • Darden, T., D. York, and L. Pedersen. 1993. Particle mesh Ewald—an N.log(N) method for Ewald sums in large systems. J. Chem. Phys. 98:10089–10092.

    Article  ADS  Google Scholar 

  • de Groot, B.L., A. Amadei, R.M. Scheek, N.A. van Nuland, and H.J.C. Berendsen. 1996. An extended sampling of the configurational space of HPr from E. coli. Proteins Struct. Funct. Genet. 26:314–322.

    Article  Google Scholar 

  • Demmers, J.A.A., A. van Dalen, B. de Kruijiff, A.J.R. Heck, and J.A. Killian. 2003. Interaction of K channel KcsA with membrane phospholipids as studied by ESI mass spectrometry. FEBS Lett. 541:28–32.

    Article  Google Scholar 

  • Deol, S.S., P.J. Bond, C. Domene, and M.S.P. Sansom. 2004. Lipid–protein interactions of integral membrane proteins: A comparative simulation study. Biophys. J. 87:3737–3749.

    Article  Google Scholar 

  • Deol, S.S., C. Domene, P.J. Bond, and M.S.P. Sansom. 2006. Anionic phospholipids interactions with the potassium channel KcsA: Simulation studies. Biophys. J. 90:822–830.

    Article  Google Scholar 

  • Domene, C., P.J. Bond, S.S. Deol, and M.S.P. Sansom. 2003. Lipid–protein interactions and the membrane/water interfacial region. J. Am. Chem. Soc. 125:14966–14967.

    Article  Google Scholar 

  • Domene, C., A. Grottesi, and M.S.P. Sansom. 2004. Filter flexibility and distortion in a bacterial inward rectifier K+ channel: Simulation studies of KirBac1.1. Biophys. J. 87:256–267.

    Article  ADS  Google Scholar 

  • Domene, C., and M.S.P. Sansom. 2003. A potassium channel, ions and water: Simulation studies based on the high resolution X-ray structure of KcsA. Biophys. J. 85:2787–2800.

    Article  ADS  Google Scholar 

  • Doyle, D.A., J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Cahit, and R. MacKinnon. 1998. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280:69–77.

    Article  ADS  Google Scholar 

  • Du, X.O., H.L. Zhang, C. Lopes, T. Mirshahi, T. Rohacs, and D.E. Logothetis. 2004. Characteristic interactions with phosphatidylinositol 4,5-bisphosphate determine regulation of Kir channels by diverse modulators. J. Biol. Chem. 279:37271–37281.

    Article  Google Scholar 

  • Durell, S.R., I.H. Shrivastava, and H.R. Guy. 2004. Models of the structure and voltage-gating mechanism of the Shaker K+ channel. Biophys. J. 87:2116–2130.

    Article  ADS  Google Scholar 

  • Eriksson, M.A.L., and B. Roux. 2002. Modeling the structure of agitoxin in complex with the Shaker K+ channel. Biophys. J. 83:2595–2609.

    Article  ADS  Google Scholar 

  • Erkip, A., and B. Erman. 2003. Dynamics of large-scale fluctuations in native proteins. Analysis based on harmonic inter-residue potentials and random external noise. Polymer 45:641–648.

    Article  Google Scholar 

  • Essmann, U., L. Perera, M.L. Berkowitz, T. Darden, H. Lee, and L.G. Pedersen. 1995. A smooth particle mesh Ewald method. J. Chem. Phys. 103:8577–8593.

    Article  ADS  Google Scholar 

  • Faraldo-Gómez, J.D., L.R. Forrest, M. Baaden, P.J. Bond, C. Domene, G. Patargias, J. Cuthbertson, and M.S.P. Sansom. 2004. Conformational sampling and dynamics of membrane proteins from 10-nanosecond computer simulations. Proteins Struct. Funct. Bioinformatics 57:783–791.

    Article  Google Scholar 

  • Fiser, A., R. Kinh Gian Do, and A. Sali. 2000. Modeling of loops in protein structures. Prot. Sci. 9:1753–1773.

    Article  Google Scholar 

  • Garcia, A.E. 1992. Large-amplitude nonlinear motions in proteins. Phys. Rev. Lett. 68:2696–2699.

    Article  ADS  Google Scholar 

  • Grottesi, A., C. Domene, and M.S.P. Sansom. 2005. Conformational dynamics of M2 helices in KirBac channels: Helix flexibility in relation to gating via molecular dynamics simulations. Biochem. 44:14586–14594.

    Article  Google Scholar 

  • Guidoni, L., and P. Carloni. 2002. Potassium permeation through the KcsA channel: A density functional study. Biochim. Biophys. Acta 1563:1–6.

    Article  Google Scholar 

  • Guidoni, L., V. Torre, and P. Carloni. 2000. Water and potassium dynamics in the KcsA K+ channel. FEBS Lett. 477:37–42.

    Article  ADS  Google Scholar 

  • Gulbis, J.M., and D.A. Doyle. 2004. Potassium channel structures: Do they conform? Curr. Opin. Struct. Biol. 14:440–446.

    Article  Google Scholar 

  • Hackos, D.H., T.H. Chang, and K.J. Swartz. 2002. Scanning the intracellular S6 activation gate in the shaker K+ channel. J. Gen. Physiol. 119:521–531.

    Article  Google Scholar 

  • Haider, S., A. Grottesi, F.M. Ashcroft, and M.S.P. Sansom. 2005. Conformational dynamics of the ligand-binding domain of inward rectifier K channels as revealed by MD simulations: Towards an understanding of Kir channel gating. Biophys. J. 88:3310–3320.

    Article  Google Scholar 

  • Holyoake, J., C. Domene, J.N. Bright, and M.S.P. Sansom. 2003. KcsA closed and open: Modelling and simulation studies. Eur. Biophys. J. 33:238–246.

    Google Scholar 

  • Hunenberger, P.H., and J.A. McCammon. 1999. Effect of artificial periodicity in simulations of biomolecules under Ewald boundary conditions: A continuum electrostatics study. Biophys. Chem. 78:69–88.

    Article  Google Scholar 

  • Hunenberger, P.H., and J.A. McCammon. 1999. Ewald artifacts in computer simulations of ionic solvation and ion–ion interaction. J. Chem. Phys. 110:1856–1872.

    Article  ADS  Google Scholar 

  • Jiang, Y., A. Lee, J. Chen, M. Cadene, B.T. Chait, and R. MacKinnon. 2002a. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515–522.

    Article  ADS  Google Scholar 

  • Jiang, Y., A. Lee, J. Chen, M. Cadene, B.T. Chait, and R. MacKinnon. 2002b. The open pore conformation of potassium channels. Nature 417:523–526.

    Article  ADS  Google Scholar 

  • Jiang, Y., A. Lee, J. Chen, V. Ruta, M. Cadene, B.T. Chait, and R. Mackinnon. 2003. X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41.

    Article  ADS  Google Scholar 

  • Jin, T., L. Peng, T. Mirshahi, T. Rohacs, K.W. Chan, R. Sanchez, and D.E. Logothetis. 2002. The βγ subunits of G proteins gate a K+ channel by pivoted bending of a transmembrane segment. Mol. Cell. 10:469–481.

    Article  Google Scholar 

  • Karplus, M.J., and J.A. McCammon. 2002. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9:646–652.

    Article  Google Scholar 

  • Kerr, I.D., H.S. Son, R. Sankararamakrishnan, and M.S.P. Sansom. 1996. Molecular dynamics simulations of isolated transmembrane helices of potassium channels. Biopolymers 39:503–515.

    Article  Google Scholar 

  • Kitao, A., and N. Go. 1999. Investigating protein dynamics in collective coordinate space. Curr. Opin. Struct. Biol. 9:164–169.

    Article  Google Scholar 

  • Kuo, A., J.M. Gulbis, J.F. Antcliff, T. Rahman, E.D. Lowe, J. Zimmer, J. Cuthbertson, F.M. Ashcroft, T. Ezaki, and D.A. Doyle. 2003. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300:1922–1926.

    Article  ADS  Google Scholar 

  • Labro, A.J., A.L. Raes, I. Bellens, N. Ottschytsch, and D.J. Snyders. 2003. Gating of Shaker-type channels requires the flexibility of S6 caused by prolines. J. Biol. Chem. 278:50724–50731.

    Article  Google Scholar 

  • Laine, M., D.M. Papazian, and B. Roux. 2004. Critical assessment of a proposed model of Shaker. FEBS Lett. 564:257–263.

    Article  Google Scholar 

  • Leach, A.R. 2001. Molecular Modelling. Principles and Applications, 2nd Ed. Prentice Hall, Harlow, England.

    Google Scholar 

  • Lee, S.Y., A. Lee, J. Chen, and R. MacKinnon. 2005. Structure of the KvAP voltage-dependent K+ channel and its dependence on the lipid membrane. Proc. Natl. Acad. Sci. USA 102:15441–15446.

    Article  ADS  Google Scholar 

  • Liu, Y., P. Sompornpisut, and E. Perozo. 2001. Structure of the KcsA channel intracellular gate in the open state. Nat. Struct. Biol. 8:883–887.

    Article  Google Scholar 

  • Long, S.B., E.B. Campbell, and R. MacKinnon. 2005. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–902.

    Article  ADS  Google Scholar 

  • Mackinnon, R. 2003. Potassium channels. FEBS Lett. 555:62–65.

    Article  Google Scholar 

  • Magidovich, E., and O.Yifrach. 2004. Conserved gating hinge in ligand- and voltagedependent K+ channels. Biochemistry 43:13242–13247.

    Article  Google Scholar 

  • Marti-Renom, M.A., A. Stuart, A. Fiser, R. Sanchez, F. Melo, and A. Sali. 2000. Comparative protein structure modelling of genes and genomes. Ann. Rev. Biophys. Biomol. Struct. 29:291–325.

    Article  Google Scholar 

  • Morais-Cabral, J.H., Y. Zhou, and R. MacKinnon. 2001. Energetic optimization of ion conduction by the K+ selectivity filter. Nature 414:37–42.

    Article  ADS  Google Scholar 

  • Nishida, M., and R. MacKinnon. 2002. Structural basis of inward rectification: Cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 Å resolution. Cell 111:957–965.

    Article  Google Scholar 

  • Nose, S., and M.L. Klein. 1983. Constant pressure molecular-dynamics for molecular-systems. Mol. Phys. 50:1055–1076.

    Article  ADS  Google Scholar 

  • Noskov, S.Y., S. Bernèche, and B. Roux. 2004. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431:830–834.

    Article  ADS  Google Scholar 

  • Perozo, E., D.M. Cortes, and L.G. Cuello. 1998. Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy. Nat. Struct. Biol. 5:459–469.

    Article  Google Scholar 

  • Perozo, E., D.M. Cortes, and L.G. Cuello. 1999. Structural rearrangements underlying K+channel activation gating. Science. 285:73–78.

    Article  Google Scholar 

  • Proks, P., C.E. Capener, P. Jones, and F. Ashcroft. 2001. Mutations within the P-loop of Kir6.2 modulate the intraburst kinetics of the ATP-sensitive potassium channel. J. Gen. Physiol. 118:341–353.

    Article  Google Scholar 

  • Ranatunga, K.M., R.D. Law, G.R. Smith, and M.S.P. Sansom. 2001. Electrostatics studies and molecular dynamics simulations of a homology model of the Shaker K+ channel pore. Eur. Biophys. J. 30:295–303.

    Article  Google Scholar 

  • Roccatano, D., I. Daidone, M.A. Ceruso, C. Bossa, and A. Di Nola. 2003. Selective excitation of native fluctuations during thermal unfolding simulations: Horse heart cytochrome c as a case study. Biophys. J. 84:1876–1883.

    Article  ADS  Google Scholar 

  • Roccatano, D., A.E. Mark, and S. Hayward. 2001. Investigation of the mechanism of domain closure in citrate synthase by molecular dynamics simulation. J. Mol. Biol. 310:1039–1053.

    Article  Google Scholar 

  • Roux, B. 2005. Ion conduction and selectivity in K+ channels. Ann. Rev. Biophys. Biomol. Struct. 34:153–171.

    Article  MathSciNet  Google Scholar 

  • Sagui, C., and T.A. Darden. 1999. Molecular dynamics simulations of biomolecules: Long-range electrostatic effects. Ann. Rev. Biophys. Biomol. Struct. 28:155–179.

    Article  Google Scholar 

  • Sali, A., and T.L. Blundell. 1993. Comparative protein modeling by satisfaction of spatial restraints. J. Mol. Biol. 234:779–815.

    Article  Google Scholar 

  • Sansom, M.S.P., P.J. Bond, S.D. Deol, A. Grottesi, S. Haider, and Z.A. Sands. 2005. Molecular simulations and lipid/protein interactions: Potassium channels and other membrane proteins. Biochem. Soc. Transac. 33:916–920.

    Article  Google Scholar 

  • Sansom, M.S.P., and H. Weinstein. 2000. Hinges, swivels and switches: The role of prolines in signalling via transmembrane aαhelices. Trends Pharm. Sci. 21:445–451.

    Article  Google Scholar 

  • Shrivastava, I.H., C. Capener, L.R. Forrest, and M.S.P. Sansom. 2000. Structure and dynamics of K+ channel pore-lining helices: A comparative simulation study. Biophys. J. 78:79–92.

    Article  Google Scholar 

  • Shrivastava, I.H., and M.S.P. Sansom. 2000. Simulations of ion permeation through a potassium channel: Molecular dynamics of KcsA in a phospholipid bilayer. Biophys. J. 78:557–570.

    Article  Google Scholar 

  • Shrivastava, I.H., and M.S.P. Sansom. 2002. Molecular dynamics simulations and KcsA channel gating. Eur. Biophys. J. 31:207–216.

    Article  Google Scholar 

  • Smart, O.S., J.G. Neduvelil, X. Wang, B.A. Wallace, and M.S.P. Sansom. 1996. Hole: A program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14:354–360.

    Article  Google Scholar 

  • Sukhareva, M., D.H. Hackos, and K. Swartz. 2003. Constitutive activation of the Shaker Kv channel. J. Gen. Physiol. 122:541–556.

    Article  Google Scholar 

  • Tempel, B.L., D.M. Papazian, T.L. Schwarz, Y.N. Jan, and L.Y. Jan. 1987. Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science 237:770–775.

    ADS  Google Scholar 

  • Tieleman, D.P., S.J. Marrink, and H.J.C. Berendsen. 1997. A computer perspective of membranes: Molecular dynamics studies of lipid bilayer systems. Biochim. Biophys. Acta 1331:235–270.

    Google Scholar 

  • Tieleman, D.P., I.H. Shrivastava, M.B. Ulmschneider, and M.S.P. Sansom. 2001. Proline-induced hinges in transmembrane helices: Possible roles in ion channel gating. Proteins Struct. Funct. Genet. 44:63–72.

    Article  Google Scholar 

  • Tobias, D.J. 2001. Electrostatics calculations: Recent methodological advances and applications to membranes. Curr. Opin. Struct. Biol. 11:253–261.

    Article  Google Scholar 

  • Valiyaveetil, F.I., Y. Zhou, and R. MacKinnon. 2002. Lipids in the structure, folding and function of the KcsA channel. Biochem. 41:10771–10777.

    Article  Google Scholar 

  • Weber, W., P.H. Hunenberger, and J.A. McCammon. 2000. Molecular dynamics simulations of a polyalanine octapeptide under Ewald boundary conditions: Influence of artificial periodicity on peptide conformation. J. Phys. Chem. B 104:3668–3675.

    Article  Google Scholar 

  • Webster, S.M., D. del Camino, J.P. Dekker, and G. Yellen. 2004. Intracellular gate opening in Shaker K+ channels defined by high-affinity metal bridges. Nature 428:864–868.

    Article  ADS  Google Scholar 

  • Yellen, G. 2002. The voltage-gated potassium channels and their relatives. Nature 419:35–42.

    Article  ADS  Google Scholar 

  • Zhao, Z., V. Yarov-Yarovoy, T. Scheuer, and W.A. Catterall. 2004. A gating hinge in Na+ channels: A molecular switch for electrical signalling. Neuron 41:859–865.

    Article  Google Scholar 

  • Zhou, Y., and R. MacKinnon. 2003. The occupancy of ions in the K+ selectivity filter: Charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J. Mol. Biol. 333:965–975.

    Article  Google Scholar 

  • Zhou, Y., J.H. Morais-Cabral, A. Kaufman, and R. MacKinnon. 2001. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 414:43–48.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Grottesi, A., Haider, S., Sansom, M.S. (2007). Molecular Dynamics Simulation Approaches to K Channels. In: Chung, SH., Andersen, O.S., Krishnamurthy, V. (eds) Biological Membrane Ion Channels. Biological And Medical Physics Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/0-387-68919-2_16

Download citation

Publish with us

Policies and ethics