Skip to main content

Ion Channels in Epithelial Cells

  • Chapter
Biological Membrane Ion Channels

Part of the book series: Biological And Medical Physics Biomedical Engineering ((BIOMEDICAL))

Abstract

Ion channels in epithelial cells serve to move ions, and in some cases fluid, between compartments of the body. This function of the transfer of material is fundamentally different from that of the transfer of information, which is the main job of most channels in excitable cells. Nevertheless the basic construction of the channels is similar in many respects in the two tissue types. This chapter reviews the nature of channels in epithelia and discusses how their functions have evolved to accomplish the basic tasks for which they are responsible. I will focus on three channel types: epithelial Na+ channels, inward-rectifier K+ channels, and CFTR Cl channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez de la Rosa, D., H. Li, and C.M. Canessa. 2002. Effects of aldosterone on biosynthesis, traffic, and functional expression of epithelial sodium channels in A6 cells. J. Gen. Physiol. 119:427–442.

    Article  Google Scholar 

  • Asher, C., H. Wald, B.C. Rossier, and H. Garty. 1996. Aldosterone-induced increase in the abundance of Na+ channel subunits. Am. J. Physiol. 271:C605–C611.

    Google Scholar 

  • Bichet, D., F.A. Haass, and L.Y. Jan. 2003. Merging functional studies with structures of inward-rectifier K(+) channels. Nat. Rev. Neurosci. 4:957–967.

    Article  Google Scholar 

  • Bradbury, N.A., J.A. Cohn, CJ. Venglarik, and R.J. Bridges. 1994. Biochemical and biophysical identification of cystic fibrosis transmembrane conductance regulator chloride channels as components of endocytic clathrin-coated vesicles. J. Biol. Chem. 269:8296–8302.

    Google Scholar 

  • Campo, C., A. Mason, D. Maouyo, O. Olsen, D. Yoo, and P.A. Welling. 2005. Molecular mechanisms of membrane polarity in renal epithelial cells. Rev. Physiol. Biochem. Pharmacol. 153:47–99.

    Article  Google Scholar 

  • Canessa, C.M., J.-D. Horisberger, and B.C. Rossier. 1993. Epithelial sodium channel related to proteins involved in neurodegeration. Nature 361:467–470.

    Article  ADS  Google Scholar 

  • Canessa, C.M., L. Schild, G. Buell, B. Thorens, Y. Gautschi, J.-D. Horisberger, and B.C. Rossier. 1994. The amiloride-sensitive epithelial sodium channel is made of three homologous subunits. Nature 367:463–467.

    Article  ADS  Google Scholar 

  • Caplan, M.J. 1997. Membrane polarity in epithelial cells: Protein sorting and establishment of polarized domains. Am. J. Physiol. 272:F425–F429.

    Google Scholar 

  • Chalfie, M. 1997. A molecular model for mechanosensation in Caenorhabditis elegans. Biol. Bull. 192:125.

    Article  Google Scholar 

  • Choe, H., L.G. Palmer, and H. Sackin. 1999. Structural determinants of gating in inward-rectifier K+ channels. Biophys. J. 76:1988–2003.

    Article  Google Scholar 

  • Choe, H., H. Sackin, and L.G. Palmer. 1998. Permeation and gating of an inwardly rectifying potassium channel. Evidence for a variable energy well. J. Gen. Physiol. 112:433–446.

    Article  Google Scholar 

  • Dawson, D.C., S.S. Smith, and M.K. Mansoura. 1999. CFTR: Mechanism of anion conduction. Physiol. Rev. 79:S47–S75.

    Google Scholar 

  • Debonneville, C., S. Flores, E. kamynina, P.J. Plant, C. Tauxe, M.A. Thomas, C. Münster, J.-D. Horisberger, D. Pearce, J. Loffing, and O. Staub. 2001. Phos-phorylation of Nedd4-2 by Sgk 1 regulates epithelial Na+ channel cell surface expression. EMBO J. 20:7052–7059.

    Article  Google Scholar 

  • Doyle, D.A., J.M. Cabral, R.A. Pfuetzerl, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, and R. MacKinnon. 1998. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280:69–77.

    Article  ADS  Google Scholar 

  • Enkvetchakul, D., G. Loussouarn, E. Makhina, S.L. Shyng, and C.G. Nichols. 2000. The kinetic and physical basis of KATP channel gating: Toward a unified molecular understanding. Biophys. J. 78:2334–2348.

    Article  Google Scholar 

  • Firsov, D., I. Gautschi, A.-M. Merillat, B.C. Rossier, and L. Schild. 1998. The het-erotetrameric architecture of the epithelial sodium channel (ENaC). EMBO J. 17:344–352.

    Article  Google Scholar 

  • Garty, H., and I.S. Edelman. 1983. Amiloride-sensitive trypsinization of apical sodium channels. Analysis of hormonal regulation of sodium transport in toad bladder. J. Gen. Physiol. 81:785–803.

    Article  Google Scholar 

  • Garty, H., and L.G. Palmer. 1997. Epithelial Na+ channels: Function, structure, and regulation. Physiol. Rev. 77:359–396.

    Google Scholar 

  • Hebert, S.C., G. Desir, G. Giebisch, and W. Wang. 2005. Molecular diversity and regulation of renal potassium channels. Physiol. Rev. 85:319–371.

    Article  Google Scholar 

  • Ho, K.H., C.G. Nichols, W.J. Lederer, J. Lytton, P.M. Vassilev, M.V. Kanazirska, and S.C. Hebert. 1993. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362:31–37.

    Article  ADS  Google Scholar 

  • Inagaki, N., T. Gonoi, J.P. Clement, C.Z. Wang, L. Aguilar-Bryan, J. Bryan, and S. Seino. 1996. A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron 16:1011–1017.

    Article  Google Scholar 

  • Jiang, Y., A. Lee, J. Chen, M. Cadene, B.T. Chait, and R. MacKinnon. 2002. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515–522.

    Article  ADS  Google Scholar 

  • Karlin, A. 2002. Emerging structure of the nicotinic acetylcholine receptors. Nat. Rev. Neurosci. 3:102–114.

    Article  Google Scholar 

  • Kellenberger, S., N. Hoffmann-Pochon, I. Gautschi, E. Schneeberger, and L. Schild. 1999. On the molecular basis of ion permeation in the epithelial Na+ channel. J. Gen. Physiol. 114:13–30.

    Article  Google Scholar 

  • Kemendy, A.E., T.R. Kleyman, and D.C. Eaton. 1992. Aldosterone alters the open probability of amiloride-blockable sodium channels in A6 epithelia. Am. J. Physiol. 263:C825–C837.

    Google Scholar 

  • Koefoed-Johnsen, V., and H.H. Ussing. 1958. On the nature of the frog skin potential. Acta Physiol. Scand. 42:298–308.

    Article  Google Scholar 

  • Kuo, A., J.M. Gulbis, J.F. Antcliff, T. Rahman, E.D. Lowe, J. Zimmer, J. Cuthbertson, F.M. Ashcroft, T. Ezaki, and D.A. Doyle. 2003. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300:1922–1926.

    Article  ADS  Google Scholar 

  • Lifton, R.P., A.G. Gharavi, and D.S. Geller. 2001. Molecular mechanisms of human hypertension. Cell 104:545–556.

    Article  Google Scholar 

  • Lin, D.H., H. Sterling, K.M. Lerea, P. Welling, L. Jin, G. Giebisch, and W.H. Wang. 2002. K depletion increases protein tyrosine kinase-mediated phosphorylation of ROMK. Am. J. Physiol. Renal Physiol. 283:F671–F677.

    Google Scholar 

  • Lin, D.H., H. Sterling, B. Yang, S.C. Hebert, G. Giebisch, and W.H. Wang. 2004. Protein tyrosine kinase is expressed and regulates ROMK1 location in the cortical collecting duct. Am. J. Physiol. 286:F881–F892.

    Article  Google Scholar 

  • Lingueglia, E., G. Champigny, M. Lazdunski, and P. Barbry. 1995. Cloning of the amiloride-sensitive FMRFamide peptide-gated sodium channel. Nature 378:730–733.

    Article  ADS  Google Scholar 

  • Liu, X., Z.R. Zhang, M.D. Fuller, J. Billingsley, N.A. McCarty, and D.C. Dawson. 2004. CFTR: A cysteine at position 338 in TM6 senses a positive electrostatic potential in the pore. Biophys. J. 87:3826–3841.

    Article  Google Scholar 

  • Loffing, J., L. Pietri, F. Aregger, M. Bloch-Faure, U. Ziegler, P. Meneton, B.C. Rossier, and B. Kaissling. 2000. Differential subcellular localization of ENaC subunits in mouse kidney in response to high- and low-Na diets. Am. J. Physiol. Renal Physiol. 279:F252–F258.

    Google Scholar 

  • Lopatin, A.N., E.N. Makhina, and C.G. Nichols. 1995. The mechanism of inward rectification of potassium channels : “Long-pore plugging” by cytoplasmic polyamines. J. Gen. Physiol. 106:923–956.

    Article  Google Scholar 

  • Masilamani, S., G.H. Kim, C. Mitchell, J.B. Wade, and M.A. Knepper. 1999. Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J. Clin. Invest. 104:R19–R23.

    Article  Google Scholar 

  • McNicholas, C.M., W.B. Guggino, E.M. Schwiebert, S.C. Hebert, G. Giebisch, and M.E. Egan. 1996. Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator. Proc. Natl. Acad. Sci. USA 93:8083–8088.

    Article  ADS  Google Scholar 

  • Morris, R.G., and J.A. Schafer. 2002. cAMP increases density of ENaC subunits in the apical membrane of MDCK cells in direct proportion to amiloride-sensitive Na(+) transport. J. Gen. Physiol. 120:71–85.

    Article  Google Scholar 

  • Mostov, K.E., M. Verges, and Y. Altschuler. 2000. Membrane traffic in polarized epithelial cells. Curr. Opin. Cell Biol. 12:483–490.

    Article  Google Scholar 

  • Noskov, S.Y., S. Berneche, and B. Roux. 2004. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431:830–834.

    Article  ADS  Google Scholar 

  • O’Connell, A.D., Q. Leng, K. Dong, G.G. MacGregor, G. Giebisch, and S.C. Hebert. 2005. Phosphorylation-regulated endoplasmic reticulum retention signal in the renal outer-medullary K+ channel (ROMK). Proc. Natl. Acad. Sci. USA 102:9954–9959.

    Article  Google Scholar 

  • O’Hagan, R., M. Chalfie, and M.B. Goodman. 2005. The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat. Neurosci. 8:43–50.

    Article  Google Scholar 

  • Palmer, L.G. 1987. Ion selectivity of epithelial Na channels. J. Membr. Biol. 96:97–106.

    Article  Google Scholar 

  • Palmer, L.G. 1999. Potassium secretion and the regulation of distal nephron K channels. Am. J. Physiol. 277:F821–F825.

    Google Scholar 

  • Palmer, L.G., and G. Frindt. 1996. Gating of Na channels in the rat cortical collecting tubule: Effects of voltage and membrane stretch. J. Gen. Physiol. 107:35–45.

    Article  Google Scholar 

  • Prince, L.S., A. Tousson, and R.B. Marchase. 1993. Cell surface labeling of CFTR in T84 cells. Am. J. Physiol. 264:C491–498.

    Google Scholar 

  • Rabinowitz, L. 1996. Aldosterone and potassium homeostasis. Kidney Int. 49:1738–1742.

    Article  Google Scholar 

  • Riordan, J.R., J.M. Rommens, B. Kerem, N. Alon, R. Rozmahel, Z. Grzelczak, J. Zelenski, S. Lok, N. Plavsik, J.L. Chao, M.L. Drumm, M.C. Iannuzzi, F.S. Collins, and L.-C. Tsui. 1989. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 245:1006–1072.

    Article  Google Scholar 

  • Schild, L., E. Schneeberger, I. Gautschi, and D. Firsov. 1997. Identification of amino acid residues in the alpha, beta, and gamma subunits of the epithelial sodium channel (ENaC) involved in amiloride block and ion permeation. J. Gen. Physiol. 109:15–26.

    Article  Google Scholar 

  • Sheng, S., J. Li, K.A. McNulty, D. Avery, and T.R. Kleyman. 2000. Characterization of the selectivity filter of the epithelial sodium channel. J. Biol. Chem. 275:8572–8581.

    Article  Google Scholar 

  • Sheppard, D.N., and M.J. Welsh. 1999. Structure and function of the CFTR chloride channel. Physiol. Rev. 79:S23–S45.

    Google Scholar 

  • Smith, S.S., E.D. Steinle, M.E. Meyerhoff, and D.C. Dawson. 1999. Cystic fibrosis transmembrane conductance regulator. Physical basis for lyotropic anion selectivity patterns. J. Gen. Physiol. 114:799–818.

    Article  Google Scholar 

  • Snyder, P.M., C. Cheng, L.S. Prince, J.C. Rogers, and M.J. Welsh. 1998. Electro-physiological and biochemical evidence that DEG/ENaC cation channels are composed of nine subunits. J. Biol. Chem. 273:681–684.

    Article  Google Scholar 

  • Staruschenko, A., E. Adams, R.E. Booth, and J.D. Stockand. 2005. Epithelial Na+ channel subunit stoichiometry. Biophys. J. 88:3966–3975.

    Article  Google Scholar 

  • Sui, J.L., K. Chan, M.N. Langan, M. Vivaudou, and D.E. Logothetis. 1999. G protein gated potassium channels. Adv. Second Messenger Phosphoprotein Res. 33:179–201.

    Google Scholar 

  • Tanemoto, M., C.G. Vanoye, K. Dong, R. Welch, T. Abe, S.C. Hebert, and J.Z. Xu. 2000. Rat homolog of sulfonylurea receptor 2B determines glibenclamide sensitivity of ROMK2 in Xenopus laevis oocyte. Am. J. Physiol. Renal Physiol. 278:F659–F666.

    Google Scholar 

  • Vergani, P., A.C. Nairn, and D.C. Gadsby. 2003. On the mechanism of MgATP-dependent gating of CFTR Cl channels. J. Gen. Physiol. 121:17–36.

    Article  Google Scholar 

  • Verrey, F., E. Hummler, L. Schild, and B. Rossier. 2000. Control of Sodium Transport by Aldosterone. Lippincott Williams and Wilkins, Philadephia, pp. 1441–1471.

    Google Scholar 

  • Waldmann, R., F. Bassilana, J. de-Weille, G. Champigny, C. Heurteaux, and M. Lazdunski. 1997. Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons. J. Biol. Chem. 272:20975–20978.

    Article  Google Scholar 

  • Wang, W.-H., K.M. Lerea, M. Chan, and G. Giebisch. 2000. Protein tyrosine kinase regulates the number of renal secretory K channels. Am. J. Physiol. 278:F165–F171.

    Google Scholar 

  • Weisz, O.A., J.M. Wang, R.S. Edinger, and J.P. Johnson. 2000. Non-coordinate regulation of endogenous epithelial sodium channel (ENaC) subunit expression at the apical membrane of A6 cells in response to various transporting conditions. J. Biol. Chem. 275:39886–39893.

    Article  Google Scholar 

  • Welsh, M.J. 1996. Cystic fibrosis. In: Molecular Biology of Membrane Transport Disorders. S.G. Schultz, T.E. Andreoli, A.M. Brown, D.M. Fambrough, J.F. Hoffman, and M.J. Welsh, editors. Plenum, New York, pp. 605–623.

    Google Scholar 

  • Yoo, D., L. Fang, A. Mason, B.Y. Kim, and P.A. Welling. 2005. A phosphorylation-dependent export structure in ROMK (KIR 1.1) channel overides an ER-localization signal. J. Biol. Chem. 280:35281–35289.

    Article  Google Scholar 

  • Zerhusen, B., J. Zhao, J. Xie, P.B. Davis, and J. Ma. 1999. A single conductance pore for chloride ions formed by two cystic fibrosis transmembrane conductance regulator molecules. J. Biol. Chem. 274:7627–7630.

    Article  Google Scholar 

  • Zhang, Y.Y., J.L. Robertson, D.A. Gray, and L.G. Palmer. 2004. Carboxy-terminal determinants of conductance in inward-rectifier K channels. J. Gen. Physiol. 124:729–739.

    Article  Google Scholar 

  • Zhou, Y., J.H. Morais-Cabral, A. Kaufman, and R. MacKinnon. 2001. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature 414:43–48.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Palmer, L.G. (2007). Ion Channels in Epithelial Cells. In: Chung, SH., Andersen, O.S., Krishnamurthy, V. (eds) Biological Membrane Ion Channels. Biological And Medical Physics Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/0-387-68919-2_12

Download citation

Publish with us

Policies and ethics