Skip to main content

Abstract

The TRP superfamily represents a highly diverse group of cation-permeable ion channels related to the product of the Drosophila trp (transient receptor potential) gene. The cloning and characterization of members of this cation channel family has experienced a remarkable growth during the last decade, uncovering a wealth of information concerning the role of TRP channels in a variety of cell types, tissues, and species. Initially, TRP channels were mainly considered as phospholipase C (PLC)-dependent and/or store-operated Ca2+-permeable cation channels. More recent research has highlighted the sensitivity of TRP channels to a broad array of chemical and physical stimuli, allowing them to function as dedicated biological sensors involved in processes ranging from vision to taste, tactile sensation, and hearing. Moreover, the tailored selectivity of certain TRP channels enables them to play key roles in the cellular uptake and/or transepithelial transport of Ca2+, Mg2+, and trace metal ions. In this chapter we give a brief overview of the TRP channel superfamily followed by a survey of current knowledge concerning their structure and activation mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almers, W., and E.W. McCleskey. 1984. Non-selective conductance in calcium channels of frog muscle: Calcium selectivity in a single-file pore. J. Physiol. 353:585–608.

    Google Scholar 

  • Bandell, M., G.M. Story, S.W. Hwang, V. Viswanath, S.R. Eid, M.J. Petrus, T.J. Earley, and A. Patapoutian. 2004. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857.

    Article  Google Scholar 

  • Bautista, D.M., Jordt, S.E., Nikai, T., Tsuruda, P.R., Read, A.J., Poblete, J., Yamoah, E.N., Basbaum, A.I., and Julius, D. 2006. TRPA1 Mediates the Inflammatory Actions of Environmental Irritants and Proalgesic Agents. Cell 124:1269–1282.

    Article  Google Scholar 

  • Bautista, D.M., P. Movahed, A. Hinman, H.E. Axelsson, O. Sterner, E.D. Hogestatt, D. Julius, S.E. Jordt, and P.M. Zygmunt. 2005. Pungent products from garlic activate the sensory ion channel TRPA1. Proc. Natl. Acad. Sci. USA 102:12248–12252.

    Article  ADS  Google Scholar 

  • Bezanilla, F. 2005. Voltage-gated ion channels. IEEE Trans. Nanobiosci. 4:34–48.

    Article  Google Scholar 

  • Birnbaumer, L., X. Zhu, M. Jiang, G. Boulay, M. Peyton, B. Vannier, D. Brown, D. Platano, H. Sadeghi, E. Stefani, and M. Birnbaumer. 1996. On the molecular basis and regulation of cellular capacitative calcium entry: Roles for Trp proteins. Proc. Natl. Acad. Sci. USA 93:15195–15202.

    Article  ADS  Google Scholar 

  • Cataldi, M., E. Perez-Reyes, and R.W. Tsien. 2002. Differences in apparent pore sizes of low and high voltage-activated Ca2+ channels. J. Biol. Chem. 277:45969–45976.

    Article  Google Scholar 

  • Caterina, M.J., T.A. Rosen, M. Tominaga, A.J. Brake, and D. Julius. 1999. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398:436–441.

    Article  ADS  Google Scholar 

  • Caterina, M.J., M.A. Schumacher, M. Tominaga, T.A. Rosen, J.D. Levine, and D. Julius. 1997. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 389:816–824.

    Article  ADS  Google Scholar 

  • Chuang, H.H., W.M. Neuhausser, and D. Julius. 2004. The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel. Neuron 43:859–869.

    Article  Google Scholar 

  • Chung, M.K., H. Lee, A. Mizuno, M. Suzuki, and M.J. Caterina. 2004. 2- aminoethoxydiphenyl borate activates and sensitizes the heat-gated ion channel TRPV3. J. Neurosci. 24:5177–5182.

    Article  Google Scholar 

  • Chyb, S., P. Raghu, and R.C. Hardie. 1999. Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL. Nature 397:255–259.

    Article  ADS  Google Scholar 

  • Clapham, D.E. 1996. TRP is cracked but is CRAC TRP? Neuron 16:1069–1072.

    Article  Google Scholar 

  • Clapham, D.E. 2003. TRP channels as cellular sensors. Nature 426:517–524.

    Article  ADS  Google Scholar 

  • Colbert, H.A., T.L. Smith, and C.I. Bargmann. 1997. OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J. Neurosci. 17:8259–8269.

    Google Scholar 

  • Corey, D.P., J. Garcia-Anoveros, J.R. Holt, K.Y. Kwan, S.Y. Lin, M.A. Vollrath, A. Amalfitano, E.L. Cheung, B.H. Derfler, A. Duggan, G.S. Geleoc, P.A. Gray, M.P. Hoffman, H.L. Rehm, D. Tamasauskas, and D.S. Zhang. 2004. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432:723–730.

    Article  ADS  Google Scholar 

  • Cosens, D.J., and A. Manning. 1969. Abnormal electroretinogram from a Drosophila mutant. Nature 224:285–287.

    Article  ADS  Google Scholar 

  • Dang, T.X., and E.W. McCleskey. 1998. Ion channel selectivity through stepwise changes in binding affinity. J. Gen. Physiol. 111:185–193.

    Article  Google Scholar 

  • Dodier, Y., U. Banderali, H. Klein, O. Topalak, O. Dafi, M. Simoes, G. Bernatchez, R. Sauve, and L. Parent. 2004. Outer pore topology of the ECaC-TRPV5 channel by cysteine scan mutagenesis. J. Biol. Chem. 279:6853–6862.

    Article  Google Scholar 

  • Doyle, D.A., J. Morais Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, and R. MacKinnon. 1998. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280:69–77.

    Article  ADS  Google Scholar 

  • Garcia-Martinez, C., C. Morenilla-Palao, R. Planells-Cases, J.M. Merino, and A. Ferrer-Montiel. 2000. Identification of an aspartic residue in the P-loop of the vanilloid receptor that modulates pore properties. J. Biol. Chem. 275:32552–32558.

    Article  Google Scholar 

  • Gavva, N.R., L. Klionsky, Y. Qu, L. Shi, R. Tamir, S. Edenson, T.J. Zhang, V.N. Viswanadhan, A. Toth, L.V. Pearce, T.W. Vanderah, F. Porreca, P.M. Blumberg, J. Lile, Y. Sun, K. Wild, J.C. Louis, and J.J. Treanor. 2004. Molecular determinants of vanilloid sensitivity in TRPV1. J. Biol. Chem. 279:20283–20295.

    Article  Google Scholar 

  • Grimm, C., R. Kraft, S. Sauerbruch, G. Schultz, and C. Harteneck. 2003. Molecular and functional characterization of the melastatin-related cation channel TRPM3. J. Biol. Chem. 278:21493–21501.

    Article  Google Scholar 

  • Grimm, C., R. Kraft, G. Schultz, and C. Harteneck. 2005. Activation of the melastatin-related cation channel TRPM3 [corrected] by D-erythrosphingosine. Mol. Pharmacol. 67:798–805.

    Article  Google Scholar 

  • Güler, A.D., H. Lee, T. Iida, I. Shimizu, M. Tominaga, and M. Caterina. 2002. Heat evoked activation of the ion channel, TRPV4. J. Neurosci. 22:6408–6414.

    Google Scholar 

  • Gunthorpe, M.J., M.H. Harries, R.K. Prinjha, J.B. Davis, and A. Randall. 2000. Voltage- and time-dependent properties of the recombinant rat vanilloid receptor (rVR1). J. Physiol. (Lond.) 525:747–759.

    Article  Google Scholar 

  • Hardie, R.C., and B. Minke. 1992. The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron 8:643–651.

    Article  Google Scholar 

  • Hardie, R.C., and P. Raghu. 2001. Visual transduction in Drosophila. Nature 413:186–193.

    Article  ADS  Google Scholar 

  • Heinemann, S.H., H. Terlau, W. Stuhmer, K. Imoto, and S. Numa. 1992. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356:441–443.

    Article  ADS  Google Scholar 

  • Hess, P., J.B. Lansman, and R.W. Tsien. 1986. Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. J. Gen. Physiol. 88:293–319.

    Article  Google Scholar 

  • Hess, P., and R.W. Tsien. 1984. Mechanism of ion permeation through calcium channels. Nature 309:453–456.

    Article  ADS  Google Scholar 

  • Hille, B. 2001. Ionic Channels of Excitable Membranes. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Hoenderop, J.G., B. Nilius, and R.J. Bindels. 2005. Calcium absorption across epithelia. Physiol. Rev. 85:373–422.

    Article  Google Scholar 

  • Hoenderop, J.G.J., R. Vennekens, D. Müller, J. Prenen, G. Droogmans, R.J.M. Bindels, and B. Nilius. 2001. Function and expression of the epithelial Ca2+ channel family: Comparison of the epithelial Ca2+ channel 1 and 2. J. Physiol. Lond. 537:747–761.

    Article  Google Scholar 

  • Hoenderop, J.G.J., T. Voets, S. Hoefs, F. Weidema, J. Prenen, B. Nilius, and R.J.M. Bindels. 2003. Homo- and heterotetrameric architecture of the epithelial Ca2+ channels, TRPV5 and TRPV6. EMBO J. 22:776–785.

    Article  Google Scholar 

  • Hofmann, T., V. Chubanov, T. Gudermann, and C. Montell. 2003. TRPM5 is a voltage-modulated and Ca(2+)-activated monovalent selective cation channel. Curr. Biol. 13:1153–1158.

    Article  Google Scholar 

  • Hofmann, T., A.G. Obukhov, M. Schaefer, C. Harteneck, T. Gudermann, and G. Schultz. 1999. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263.

    Article  ADS  Google Scholar 

  • Howard, J., and S. Bechstedt. 2004. Hypothesis: A helix of ankyrin repeats of the NOMPC-TRP ion channel is the gating spring of mechanoreceptors. Curr. Biol. 14:R224–R226.

    Article  Google Scholar 

  • Hu, H.Z., Q. Gu, C. Wang, C.K. Colton, J. Tang, M. Kinoshita-Kawada, L.Y. Lee, J.D. Wood, and M.X. Zhu. 2004. 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J. Biol. Chem. 279:35741–35748.

    Article  Google Scholar 

  • Hwang, S.W., H. Cho, J. Kwak, S.Y. Lee, C.J. Kang, J. Jung, S. Cho, K.H. Min, Y.G. Suh, D. Kim, and U. Oh. 2000. Direct activation of capsaicin receptors by products of lipoxygenases: Endogenous capsaicin-like substances. Proc. Natl. Acad. Sci. USA 97:6155–6160.

    Article  ADS  Google Scholar 

  • Jordt, S.E., D.M. Bautista, H.H. Chuang, D.D. McKemy, P.M. Zygmunt, E.D. Hogestatt, I.D. Meng, and D. Julius. 2004. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265.

    Article  ADS  Google Scholar 

  • Jordt, S.E., and D. Julius. 2002. Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell 108:421–430.

    Article  Google Scholar 

  • Jung, S., A. Muhle, M. Schaefer, R. Strotmann, G. Schultz, and T.D. Plant. 2003. Lanthanides potentiate TRPC5 currents by an action at extracellular sites close to the pore mouth. J Biol Chem. 278:3562–3571.

    Article  Google Scholar 

  • Kedei, N., T. Szabo, J.D. Lile, J.J. Treanor, Z. Olah, M.J. Iadarola, and P.M. Blumberg. 2001. Analysis of the native quaternary structure of vanilloid receptor 1. J. Biol. Chem. 276:28613–28619.

    Article  Google Scholar 

  • Kim, J., Y.D. Chung, D.Y. Park, S. Choi, D.W. Shin, H. Soh, H.W. Lee, W. Son, J. Yim, C.S. Park, M.J. Kernan, and C. Kim. 2003. A TRPV family ion channel required for hearing in Drosophila. Nature 424:81–84.

    Article  ADS  Google Scholar 

  • Kwan, K.Y., A.J. Allchorne, M.A. Vollrath, A.P. Christensen, D.S. Zhang, C.J. Woolf, and D.P. Corey. 2006. TRPA1 Contributes to Cold, Mechanical, and Chemical Nociception but Is Not Essential for Hair-Cell Transduction. Neuron 50:277–289.

    Article  Google Scholar 

  • Launay, P., A. Fleig, A.L. Perraud, A.M. Scharenberg, R. Penner, and J.P. Kinet. 2002. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109:397–407.

    Article  Google Scholar 

  • Liedtke, W., Y. Choe, M.A. Marti-Renom, A.M. Bell, C.S. Denis, A. Sali, A.J. Hudspeth, J.M. Friedman, and S. Heller. 2000. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103:525–535.

    Article  Google Scholar 

  • Liedtke, W., D.M. Tobin, C.I. Bargmann, and J.M. Friedman. 2003. Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 100(Suppl 2):14531–14536.

    Article  ADS  Google Scholar 

  • Liu, D., and E.R. Liman. 2003. Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc. Natl. Acad. Sci. USA 100:15160–15165.

    Article  ADS  Google Scholar 

  • Liu, X., B.B. Singh, and I.S. Ambudkar. 2003. TRPC1 is required for functional store-operated Ca2+ channels. Role of acidic amino acid residues in the S5-S6 region. J. Biol. Chem. 278:11337–11343.

    Article  Google Scholar 

  • Long, S.B., E.B. Campbell, and R. Mackinnon. 2005a. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903.

    Article  ADS  Google Scholar 

  • Long, S.B., E.B. Campbell, and R. Mackinnon. 2005b. Voltage sensor of Kv1.2: Structural basis of electromechanical coupling. Science 309:903–908.

    Article  ADS  Google Scholar 

  • Macpherson, L., B.H. Geierstanger, V. Viswanath, M. Bandell, S.R. Eid, and A. Patapoutian. 2005. The pungency of garlic: Activation of TRPA1 and TRPV1 in response to allicin. Curr. Biol. 15:929–934.

    Article  Google Scholar 

  • Maroto, R., A. Raso, T.G. Wood, A. Kurosky, B. Martinac, and O.P. Hamill. 2005. TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat. Cell Biol. 7:179–185.

    Article  Google Scholar 

  • McCleskey, E.W., and W. Almers. 1985. The Ca channel in skeletal muscle is a large pore. Proc. Natl. Acad. Sci. USA 82:7149–7153.

    Article  ADS  Google Scholar 

  • McDonald, T.F., S. Pelzer, W. Trautwein, and D.J. Pelzer. 1994. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol. Rev. 74:365–507.

    Google Scholar 

  • McKemy, D.D., W.M. Neuhäusser, and D. Julius. 2002. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58.

    Article  ADS  Google Scholar 

  • McNamara, F.N., A. Randall, and M.J. Gunthorpe. 2005. Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1). Br. J. Pharmacol. 144:781–790.

    Article  Google Scholar 

  • Montell, C. 2005. The TRP superfamily of cation channels. Sci. STKE 2005:re3.

    Article  Google Scholar 

  • Montell, C., L. Birnbaumer, V. Flockerzi, R.J. Bindels, E.A. Bruford, M.J. Caterina, D.E. Clapham, C. Harteneck, S. Heller, D. Julius, I. Kojima, Y. Mori, R. Penner, D. Prawitt, A.M. Scharenberg, G. Schultz, N. Shimizu, and M.X. Zhu. 2002. A unified nomenclature for the superfamily of TRP cation channels. Mol. Cell. 9:229–231.

    Article  Google Scholar 

  • Montell, C., and G.M. Rubin. 1989. Molecular characterization of the Drosophila trp locus: A putative integral membrane protein required for phototransduction. Neuron 2:1313–1323.

    Article  Google Scholar 

  • Moqrich, A., S.W. Hwang, T.J. Earley, M.J. Petrus, A.N. Murray, K.S. Spencer, M. Andahazy, G.M. Story, and A. Patapoutian. 2005. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307:1468–1472.

    Article  ADS  Google Scholar 

  • Muraki, K., Y. Iwata, Y. Katanosaka, T. Ito, S. Ohya, M. Shigekawa, and Y. Imaizumi. 2003. TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ. Res. 93:829–838.

    Article  Google Scholar 

  • Nadler, M.J., M.C. Hermosura, K. Inabe, A.L. Perraud, Q. Zhu, A.J. Stokes, T. Kurosaki, J.P. Kinet, R. Penner, A.M. Scharenberg, and A. Fleig. 2001. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411:590–595.

    Article  ADS  Google Scholar 

  • Nagata, K., A. Duggan, G. Kumar, and J. Garcia-Anoveros. 2005. Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J. Neurosci. 25:4052–4061.

    Article  Google Scholar 

  • Nilius, B., J. Prenen, G. Droogmans, T. Voets, R. Vennekens, M. Freichel, U. Wissenbach, and V. Flockerzi. 2003. Voltage dependence of the Ca2+-activated cation channel TRPM4. J. Biol. Chem. 278:30813–30820.

    Article  Google Scholar 

  • Nilius, B., J. Prenen, A. Janssens, G. Owsianik, C. Wang, M.X. Zhu, and T. Voets. 2005a. The selectivity filter of the cation channel TRPM4. J. Biol. Chem. 280:22899–22906.

    Article  Google Scholar 

  • Nilius, B., J. Prenen, U. Wissenbach, M. Bodding, and G. Droogmans. 2001a. Differential activation of the volume-sensitive cation channel TRP12 (OTRPC4) and volume-regulated anion currents in HEK-293 cells. Pflugers Arch. 443:227–233.

    Article  Google Scholar 

  • Nilius, B., K. Talavera, G. Owsianik, J. Prenen, G. Droogmans, and T. Voets. 2005b. Gating of TRP channels: A voltage connection? J. Physiol. (Lond.) 567:35–44.

    Article  Google Scholar 

  • Nilius, B., R. Vennekens, J. Prenen, J.G. Hoenderop, G. Droogmans, and R.J. Bindels. 2001b. The single pore residue Asp542 determines Ca2+ permeation and Mg2+ block of the epithelial Ca2+ channel. J. Biol. Chem. 276:1020–1025.

    Article  Google Scholar 

  • Oberwinkler, J., A. Lis, K.M. Giehl, V. Flockerzi, and S.E. Philipp. 2005. Alternative splicing switches the divalent cation selectivity of TRPM3 channels. J. Biol. Chem. 280:22540–22548.

    Article  Google Scholar 

  • Owsianik, G., D. D’hoedt, T. Voets, and B. Nilius. 2006a. Structure–function relationships of the TRP channel superfamily. Rev. Physiol. Biochem. Pharmacol. 156:61–90.

    Article  Google Scholar 

  • Owsianik, G., K. Talavera, T. Voets, and B. Nilius. 2006b. Permeation and selectivity of TRP channels. Annu. Rev. Physiol. 68:4.1–4.33.

    Article  Google Scholar 

  • Patapoutian, A., A.M. Peier, G.M. Story, and V. Viswanath. 2003. ThermoTRP channels and beyond: Mechanisms of temperature sensation. Nat. Rev. Neurosci. 4:529–539.

    Article  Google Scholar 

  • Peier, A.M., A. Moqrich, A.C. Hergarden, A.J. Reeve, D.A. Andersson, G.M. Story, T.J. Earley, I. Dragoni, P. McIntyre, S. Bevan, and A. Patapoutian. 2002a. A TRP channel that senses cold stimuli and menthol. Cell 108:705–715.

    Article  Google Scholar 

  • Peier, A.M., A.J. Reeve, D.A. Andersson, A. Moqrich, T.J. Earley, A.C. Hergarden, G.M. Story, S. Colley, J.B. Hogenesch, P. McIntyre, S. Bevan, and A. Patapoutian. 2002b. A heat-sensitive TRP channel expressed in keratinocytes. Science 296:2046–2049.

    Article  ADS  Google Scholar 

  • Perozo, E., D.M. Cortes, P. Sompornpisut, A. Kloda, and B. Martinac. 2002. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418:942–948.

    Article  ADS  Google Scholar 

  • Perraud, A.L., A. Fleig, C.A. Dunn, L.A. Bagley, P. Launay, C. Schmitz, A.J. Stokes, Q. Zhu, M.J. Bessman, R. Penner, J.P. Kinet, and A.M. Scharenberg. 2001. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–599.

    Article  ADS  Google Scholar 

  • Petersen, C.C., M.J. Berridge, M.F. Borgese, and D.L. Bennett. 1995. Putative capacitative calcium entry channels: Expression of Drosophila trp and evidence for the existence of vertebrate homologues. Biochem. J. 311(Pt 1):41–44.

    Google Scholar 

  • Phillips, A.M., A. Bull, and L.E. Kelly. 1992. Identification of a Drosophila gene encoding a calmodulin-binding protein with homology to the trp phototransduction gene. Neuron 8:631–642.

    Article  Google Scholar 

  • Prawitt, D., M.K. Monteilh-Zoller, L. Brixel, C. Spangenberg, B. Zabel, A. Fleig, and R. Penner. 2003. TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i. Proc. Natl. Acad. Sci. USA 100:15166–15171.

    Article  ADS  Google Scholar 

  • Putney, J.W. 2005. Physiological mechanisms of TRPC activation. Pflugers Arch. 451:29–34.

    Article  Google Scholar 

  • Putney, J.W., Jr. 2004. The enigmatic TRPCs: Multifunctional cation channels. Trends Cell Biol. 14:282–286.

    Article  Google Scholar 

  • Reuss, H., M.H. Mojet, S. Chyb, and R.C. Hardie. 1997. In vivo analysis of the Drosophila light-sensitive channels, TRP and TRPL. Neuron 19:1249–1259.

    Article  Google Scholar 

  • Runnels, L.W., L. Yue, and D.E. Clapham. 2001. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291:1043–1047.

    Article  ADS  Google Scholar 

  • Sather, W.A., and E.W. McCleskey. 2003. Permeation and selectivity in calcium channels. Annu. Rev. Physiol. 65:133–159.

    Article  Google Scholar 

  • Schlingmann, K.P., S. Weber, M. Peters, L. Niemann Nejsum, H. Vitzthum, K. Klingel, M. Kratz, E. Haddad, E. Ristoff, D. Dinour, M. Syrrou, S. Nielsen, M. Sassen, S. Waldegger, H.W. Seyberth, and M. Konrad. 2002. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat. Genet. 31:166–170.

    Article  Google Scholar 

  • Schmitz, C., A.L. Perraud, C.O. Johnson, K. Inabe, M.K. Smith, R. Penner, T. Kurosaki, A. Fleig, and A.M. Scharenberg. 2003. Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114:191–200.

    Article  Google Scholar 

  • Sidi, S., R.W. Friedrich, and T. Nicolson. 2003. NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301:96–99.

    Article  ADS  Google Scholar 

  • Smith, G.D., M.J. Gunthorpe, R.E. Kelsell, P.D. Hayes, P. Reilly, P. Facer, J.E. Wright, J.C. Jerman, J.P. Walhin, L. Ooi, J. Egerton, K.J. Charles, D. Smart, A.D. Randall, P. Anand, and J.B. Davis. 2002. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418:186–190.

    Article  ADS  Google Scholar 

  • Sotomayor, M., D.P. Corey, and K. Schulten. 2005. In search of the hair-cell gating spring elastic properties of ankyrin and cadherin repeats. Structure (Camb.) 13:669–682.

    Article  Google Scholar 

  • Story, G.M., A.M. Peier, A.J. Reeve, S.R. Eid, J. Mosbacher, T.R. Hricik, T.J. Earley, A.C. Hergarden, D.A. Andersson, S.W. Hwang, P. McIntyre, T. Jegla, S. Bevan, and A. Patapoutian. 2003. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829.

    Article  Google Scholar 

  • Strotmann, R., C. Harteneck, K. Nunnenmacher, G. Schultz, and T.D. Plant. 2000. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat. Cell Biol. 2:695–702.

    Article  Google Scholar 

  • Swartz, K.J. 2004. Towards a structural view of gating in potassium channels. Nat. Rev. Neurosci. 5:905–916.

    Article  MathSciNet  Google Scholar 

  • Szallasi, A., P.M. Blumberg, L.L. Annicelli, J.E. Krause, and D.N. Cortright. 1999. The cloned rat vanilloid receptor VR1 mediates both R-type binding and C-type calcium response in dorsal root ganglion neurons. Mol. Pharmacol. 56:581–587.

    Google Scholar 

  • Talavera, K., M. Staes, A. Janssens, N. Klugbauer, G. Droogmans, F. Hofmann, and B. Nilius. 2001. Aspartate residues of the Glu-Glu-Asp-Asp (EEDD) pore locus control selectivity and permeation of the T-type Ca(2+) channel alpha(1G). J. Biol. Chem. 276:45628–45635.

    Article  Google Scholar 

  • Talavera, K., K. Yasumatsu, T. Voets, G. Droogmans, N. Shigemura, Y. Ninomiya, R.F. Margolskee, and B. Nilius. 2005. Heat-activation of TRPM5 underlies the thermal sensitivity of sweet taste. Nature 438:1022–1025.

    Article  ADS  Google Scholar 

  • Tsien, R.W., P. Hess, E.W. McCleskey, and R.L. Rosenberg. 1987. Calcium channels: Mechanisms of selectivity, permeation, and block. Annu. Rev. Biophys. Biophys. Chem. 16:265–290.

    Article  Google Scholar 

  • Varadi, G., M. Strobeck, S. Koch, L. Caglioti, C. Zucchi, and G. Palyi. 1999. Molecular elements of ion permeation and selectivity within calcium channels. Crit. Rev. Biochem. Mol. Biol. 34:181–214.

    Article  Google Scholar 

  • Venkatachalam, K., D.B. van Rossum, R.L. Patterson, H.T. Ma, and D.L. Gill. 2002. The cellular and molecular basis of store-operated calcium entry. Nat. Cell Biol. 4:E263-E272.

    Article  Google Scholar 

  • Vennekens, R., J.G. Hoenderop, J. Prenen, M. Stuiver, P.H. Willems, G. Droogmans, B. Nilius, and R.J. Bindels. 2000. Permeation and gating properties of the novel epithelial Ca2+ channel. J. Biol. Chem. 275:3963–3969.

    Article  Google Scholar 

  • Vennekens, R., J. Prenen, J.G. Hoenderop, R.J. Bindels, G. Droogmans, and B. Nilius. 2001. Pore properties and ionic block of the rabbit epithelial calcium channel expressed in HEK 293 cells. J. Physiol. (Lond.) 530:183–191.

    Article  Google Scholar 

  • Voets, T., G. Droogmans, U. Wissenbach, A. Janssens, V. Flockerzi, and B. Nilius. 2004a. The principle of temperature-dependent gating in cold- and heatsensitive TRP channels. Nature 430:748–754.

    Article  ADS  Google Scholar 

  • Voets, T., A. Janssens, G. Droogmans, and B. Nilius. 2004b. Outer pore architecture of a Ca2+-selective TRP channel. J. Biol. Chem. 279:15223–15230.

    Article  Google Scholar 

  • Voets, T., A. Janssens, J. Prenen, G. Droogmans, and B. Nilius. 2003. Mg2+- dependent gating and strong inward rectification of the cation channel TRPV6. J. Gen. Physiol. 121:245–260.

    Article  Google Scholar 

  • Voets, T., B. Nilius, S. Hoefs, A.W. van der Kemp, G. Droogmans, R.J. Bindels, and J.G. Hoenderop. 2004c. TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J. Biol. Chem. 279:19–25.

    Article  Google Scholar 

  • Voets, T., J. Prenen, J. Vriens, H. Watanabe, A. Janssens, U. Wissenbach, M. Bodding, G. Droogmans, and B. Nilius. 2002. Molecular determinants of permeation through the cation channel TRPV4. J. Biol. Chem. 277:33704–33710.

    Article  Google Scholar 

  • Voets, T., K. Talavera, G. Owsianik, and B. Nilius. 2005. Sensing with TRP channels. Nat. Chem. Biol. 1:85–92.

    Article  Google Scholar 

  • Vriens, J., G. Owsianik, T. Voets, G. Droogmans, and B. Nilius. 2004a. Invertebrate TRP proteins as functional models for mammalian channels. Pflugers Arch. 449:213–226.

    Google Scholar 

  • Vriens, J., H. Watanabe, A. Janssens, G. Droogmans, T. Voets, and B. Nilius. 2004b. Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc. Natl. Acad. Sci. USA 101:396–401.

    Article  ADS  Google Scholar 

  • Walder, R.Y., D. Landau, P. Meyer, H. Shalev, M. Tsolia, Z. Borochowitz, M.B. Boettger, G.E. Beck, R.K. Englehardt, R. Carmi, and V.C. Sheffield. 2002. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat. Genet. 31:171–174.

    Article  Google Scholar 

  • Walker, R.G., A.T. Willingham, and C.S. Zuker. 2000. A Drosophila mechanosensory transduction channel. Science 287:2229–2234.

    Article  ADS  Google Scholar 

  • Watanabe, H., J.B. Davis, D. Smart, J.C. Jerman, G.D. Smith, P. Hayes, J. Vriens, W. Cairns, U. Wissenbach, J. Prenen, V. Flockerzi, G. Droogmans, C.D. Benham, and B. Nilius. 2002a. Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J. Biol. Chem. 277:13569–13577.

    Article  Google Scholar 

  • Watanabe, H., J. Vriens, J. Prenen, G. Droogmans, T. Voets, and B. Nilius. 2003. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424:434–438.

    Article  ADS  Google Scholar 

  • Watanabe, H., J. Vriens, S.H. Suh, C.D. Benham, G. Droogmans, and B. Nilius. 2002b. Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J. Biol. Chem. 277:47044–47051.

    Article  Google Scholar 

  • Wes, P.D., J. Chevesich, A. Jeromin, C. Rosenberg, G. Stetten, and C. Montell. 1995. TRPC1, a human homolog of a Drosophila store-operated channel. Proc. Natl. Acad. Sci. USA 92:9652–9656.

    Article  ADS  Google Scholar 

  • Wissenbach, U., M. Bodding, M. Freichel, and V. Flockerzi. 2000. Trp12, a novel Trp related protein from kidney. FEBS Lett. 485:127–134.

    Article  Google Scholar 

  • Xu, H., N.T. Blair, and D.E. Clapham. 2005. Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid independent mechanism. J. Neurosci. 25:8924–8937.

    Article  Google Scholar 

  • Xu, H., I.S. Ramsey, S.A. Kotecha, M.M. Moran, J.A. Chong, D. Lawson, P. Ge, J. Lilly, I. Silos-Santiago, Y. Xie, P.S. DiStefano, R. Curtis, and D.E. Clapham. 2002. TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418:181–186.

    Article  ADS  Google Scholar 

  • Xu, X.Z., F. Chien, A. Butler, L. Salkoff, and C. Montell. 2000. TRPgamma, a Drosophila TRP-related subunit, forms a regulated cation channel with TRPL. Neuron 26:647–657.

    Article  Google Scholar 

  • Yang, J., P.T. Ellinor, W.A. Sather, J.F. Zhang, and R.W. Tsien. 1993. Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 366:158–161.

    Article  ADS  Google Scholar 

  • Yeh, B.I., Y.K. Kim, W. Jabbar, and C.L. Huang. 2005. Conformational changes of pore helix coupled to gating of TRPV5 by protons. EMBO J. 24:3224–3234.

    Article  Google Scholar 

  • Yeh, B.I., T.J. Sun, J.Z. Lee, H.H. Chen, and C.L. Huang. 2003. Mechanism and molecular determinant for regulation of rabbit transient receptor potential type 5 (TRPV5) channel by extracellular pH. J. Biol. Chem. 278:51044–51052.

    Article  Google Scholar 

  • Yellen, G. 2002. The voltage-gated potassium channels and their relatives. Nature 419:35–42.

    Article  ADS  Google Scholar 

  • Yue, L., J.B. Peng, M.A. Hediger, and D.E. Clapham. 2001. CaT1 manifests the pore properties of the calcium-release-activated calcium channel. Nature 410:705–709.

    Article  ADS  Google Scholar 

  • Zhu, X., M. Jiang, M. Peyton, G. Boulay, R. Hurst, E. Stefani, and L. Birnbaumer. 1996. trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85:661–671.

    Article  Google Scholar 

  • Zitt, C., A. Zobel, A.G. Obukhov, C. Harteneck, F. Kalkbrenner, A. Luckhoff, and G. Schultz. 1996. Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion. Neuron 16:1189–1196.

    Article  Google Scholar 

  • Zygmunt, P.M., J. Petersson, D.A. Andersson, H. Chuang, M. Sorgard, V. Di Marzo, D. Julius, and E.D. Hogestatt. 1999. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Voets, T., Owsianik, G., Nilius, B. (2007). TRP Channels. In: Chung, SH., Andersen, O.S., Krishnamurthy, V. (eds) Biological Membrane Ion Channels. Biological And Medical Physics Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/0-387-68919-2_11

Download citation

Publish with us

Policies and ethics