Skip to main content

Mechanosensitive Channels

  • Chapter
Biological Membrane Ion Channels

Part of the book series: Biological And Medical Physics Biomedical Engineering ((BIOMEDICAL))

Abstract

Living cells are exposed to a variety of mechanical stimuli acting throughout the biosphere. The range of the stimuli extends from thermal molecular agitation to potentially destructive cell swelling caused by osmotic pressure gradients. Cellular membranes present a major target for these stimuli. To detect mechanical forces acting upon them cell membranes are equipped with mechanosensitive (MS) ion channels. Functioning as molecular mechanoelectrical transducers of mechanical forces into electrical and/or chemical intracellular signals these channels play a critical role in the physiology of mechanotransduction. Studies of prokaryotic MS channels and recent work on MS channels of eukaryotes have significantly increased our understanding of their gating mechanism, physiological functions, and evolutionary origins as well as their role in the pathology of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, C.M., M.G. Anderson, D.G. Motto, M.P. Price, W.A. Johnson, and M.J. Welsh. 1998. Ripped pocket and pickpocket, novel Drosophila DEG/ENaC subunits in early development and mechanosensory neurons. J. Cell Biol. 140:143–152.

    Article  Google Scholar 

  • Ainsley, J.A. et al. 2003. Enhanced locomotion caused by loss of the Drosophila DEG/ENaC protein Pickpocket1. Curr. Biol. 13:1557–1563.

    Article  Google Scholar 

  • Ajouz, B., C. Berrier, M. Besnard, B. Martinac, and A. Ghazi. 2000. Contributions of the different extramembranous domains of the mechanosensitive ion channel MscL to its response to membrane tension. J. Biol. Chem. 275:1015–1022.

    Article  Google Scholar 

  • Awayda, M.S., W. Shaom, F. Guo, M. Zeidel, and W.G. Hill. 2004. ENaC-membrane interactions: Regulation of channel activity by membrane order. J. Gen. Physiol. 123(6):709–727.

    Article  Google Scholar 

  • Bandell, M. et al. 2004. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857.

    Article  Google Scholar 

  • Barritt, G., and G. Rychkov. 2005. TRPs as mechanosensitive channels. Nat. Cell Biol. 7:105–107.

    Article  Google Scholar 

  • Bass, R.B., P. Strop, M. Barclay, and D. Rees. 2002. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298:1582–1587.

    Article  ADS  Google Scholar 

  • Berrier, C., M. Besnard, B. Ajouz, A. Coulombe, and A. Ghazi. 1996. Multiple mechanosensitive ion channels from Escherichia coli, activated at different thresholds of applied pressure. J. Membr. Biol. 151:175–187.

    Article  Google Scholar 

  • Betanzos, M., C.-S. Chiang, H.R. Guy, and S. Sukharev. 2002. A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension. Nat. Struct. Biol. 9(9):704–710.

    Article  Google Scholar 

  • Bezanilla, F., and E. Perozo. 2002. Force and voltage sensors in one structure. Science 298:1562–1563.

    Article  Google Scholar 

  • Biggin, P.C., and M.S.P. Sansom. 2001. Channel gating: Twist to open. Curr. Biol. 11(9):R364–R366.

    Article  Google Scholar 

  • Bockenhauer, D., N. Zilberberg, and S.A.N. Goldstein. 2001. KCNK2: Reversible conversion of a hippocampal potassium leak into a voltage-dependent channel. Nat. Neurosci. 4(5):486–491.

    Google Scholar 

  • Bode, F., F. Sachs, and M.R. Franz. 2001. Tarantula peptide inhibits atrial fibrillation during stretch. Nature 409:35–36.

    Article  ADS  Google Scholar 

  • Booth, I.R., and P. Louis. 1999. Managing hypoosmotic stress: Aquaporins and mechano-sensitive channels in Escherichia coli. Curr. Opin. Microbiol. 2:166–169.

    Article  Google Scholar 

  • Bowman, C.B., J.P. Ding, F. Sachs, and M. Sokabe. 1992. Mechanotransducing ion channels in astrocytes. Brain Res. 584:272–286.

    Article  Google Scholar 

  • Bowman, C.B., and J.W. Lohr. 1996. Mechanotransducing ion channels in C6 glioma cells. Glia 18:161–176.

    Article  Google Scholar 

  • Brehm, P., R. Kullberg, and F. Moody-Corbet. 1984. Properties of nonjunctional acetylcholine receptor channels on innervated muscle of Xenopus laevis. J. Physiol. 350:631–648.

    Google Scholar 

  • Canessa, C.M., A.M. Merillat, and B.C. Rossier. 1994. Membrane topology of the epithelial sodium channel in intact cells. Am. J. Physiol. Cell Physiol. 267:C1682–C1690.

    Google Scholar 

  • Cantor, R.S. 1997. Lateral pressures in cell membranes:A mechanism for modulation of protein function. J. Phys. Chem. 101:1723–1725.

    Google Scholar 

  • Chang, G., R. Spencer, A. Lee, M. Barclay, and C. Rees. 1998. Structure of the MscL homologue from Mycobacterium tuberculosis: A gated mechanosensitive ion channel. Science 282:2220–2226.

    Article  ADS  Google Scholar 

  • Chen, X.Z., P.M. Vassilev, N. Basora, J.B. Peng, H. Nomura, Y. Segal, E.M. Brown, S.T. Reeders, M.A. Hediger, and J. Zhou. 1999. Polycystin-L is a calciumregulated cation channel permeable to calcium ions. Nature 401:383–386.

    ADS  Google Scholar 

  • Christensen, O. 1987. Mediation of cell volume regulation by Ca2+ influx through stretch-activated channels. Nature 330:66–68.

    Article  ADS  Google Scholar 

  • Clapham, D.E. 2003. TRP channels as cellular sensors. Nature 426:517–524.

    Article  ADS  Google Scholar 

  • Colbert, H.A., T.L. Smith, and C.I. Bargmann. 1997. Osm-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adapation in Caenorhabditis elegans. J. Neurosci. 17:8259–8269.

    Google Scholar 

  • Colombo, G., S.J. Marrink, and A.E. Mark. 2003. Simulation of MscL gating in a bilayer under stress. Biophys. J. 84:2331–2337.

    Google Scholar 

  • Corey, D. 2003a. Sensory transduction in the ear. J. Cell Sci. 116:1–3.

    Article  Google Scholar 

  • Corey, D.P. 2003b. New TRP channels in hearing and mechanosensation. Neuron 39:585–588.

    Article  Google Scholar 

  • Corey, D.P., J. Garcia-Añoveros, J.R. Holt, K.Y. Kwan, S.Y. Lin, M.A. Vollrath, A. Amalfitano, E.L. Cheung, B.H. Derfler, A. Duggan, et al. 2004. TRPA1 is a candidate for the mechanosensitive channel of vertebrate hair cells. Nature 432:723–730.

    Article  ADS  Google Scholar 

  • Corey, D.P., and A.J. Hudspeth. 1983. Kinetics of the receptor current in bullfrog saccular hair cells. J. Neurosci. 3:962–976.

    Google Scholar 

  • Corry, B., P. Rigby, P., Z.-W. Liu, Z.-W. and B. Martinac, B. 2005. Conformational changes involved in MscL channel gating measured using FRET spectroscopy. Biophys. J. 89:L49–L51.

    Article  Google Scholar 

  • Cruickshank, C., R. Minchin, A. LeDain, and B. Martinac. 1997. Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli. Biophys. J. 73:1925–1931.

    Google Scholar 

  • Csonka, L.N., and W. Epstein. 1996. Osmoregulation. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd Ed. F.C. Neidhardt, R. Curtis III, J.L. Ingraham, E.C.C. Lin, K. Brooks Low, B. Magasanik, W.S. Reznikoff, M. Riley, M. Schaechter, and H.E. Umbarger, editors. ASM Press, Washington, DC, pp.1210–1225.

    Google Scholar 

  • Cui, C., D.O. Smith, and J. Adler. 1995. Characterization of mechanosensitive channels in Escherichia coli cytoplasmic membranes by whole cell patch clamp recording. J. Membr. Biol. 144:31–42.

    Google Scholar 

  • Darboux, I., E. Lingueglia, G. Champigny, S. Coscoy, P. Barbry, and M. Lazdunski. 1998. dGNaCl, a gonad-specific amiloride sensitive Na+ channel. J. Biol. Chem. 273:9424–9429.

    Article  Google Scholar 

  • Delmas, P. 2004. Polycystins: From mechanosensation to gene regulation. Cell 118(2):145–148.

    Article  Google Scholar 

  • Detweiler, P.B. 1989. Sensory transduction. In Textbook of Physiology: Excitable Cells and Neurophysiology. Patton, H.D., Fuchs, A.F., Hille, B., Sher, A.M. and Streiner, R. (eds.), Saunders Company, Philadelphia, London, Toronto, Montreal, Sydney, Tokyo, pp. 98–129.

    Google Scholar 

  • Devuyst, O. et al. 2003. Autosomal dominant polycystic kidney disease: modifier genes and endothelial dysfunction. Nephrol. Dial. Transplant. 18(11);2211–2215.

    Article  Google Scholar 

  • Driscoll, M., and M. Chalfie. 1991. The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349:588–593.

    Article  ADS  Google Scholar 

  • Du, H., G. Gu, C.M. William, and M. Chalfie. 1996. Extracellular proteins needed for C. elegans mechanosensation. Neuron 16:183–194.

    Article  Google Scholar 

  • Elmore, D.E., and D.A. Dougherty. 2003. Investigating lipid composition effects on the mechanosensitive channel of large conductance (MscL) using molecular dynamics simulations. Biophys. J. 85(3):1512–1524.

    Google Scholar 

  • Ermakov, Y.A., A.Z. Averbakh, A.I. Yusipovich, and S.I. Sukharev. 2001. Dipole potentials indicate restructuring of the membrane interface induced by gadolinium and beryllium ions. Biophys. J. 80:1851–1862.

    Article  Google Scholar 

  • Franco, A., and J.B. Lansman. 1990. Calcium entry through stretch-inactivated channels in mdx myotubes. Nature 344:670–673.

    Article  ADS  Google Scholar 

  • Franco-Obregon, A., Jr., and J.B. Lansman. 1994. Mechanosensitive ion channels from normal and dystrophic mice. J. Physiol. 481:299–309.

    Google Scholar 

  • Franz, M.R., R. Cima, D. Wang, D. Profitt, and R. Kurz. 1992. Electrophysiological effects of myocardial stretch and mechanical determinants of stretch-activated arrhythmias. Circulation 86:968–978.

    Google Scholar 

  • García-Añovernos, J., and D.P. Corey. 1997. The molecules of mechanosensation. Ann. Rev. Neurosci. 20:567–594.

    Article  Google Scholar 

  • Garty, H., and L.G. Palmer. 1997. Epithelial sodium channels: Function, structure, and regulation. Physiol. Rev. 77:359–396.

    Google Scholar 

  • Gillespie, P.G., and R.G. Walker. 2001. Molecular basis of mechanotransduction. Nature 413:194–202.

    Article  ADS  Google Scholar 

  • Goodman, M.B., G.G. Ernstrom, D.S. Chelur, R.C. O’Hagan, A. Yao, and M. Chalfie. 2002. MEC-2 regulates C. elegans DEG/EnaC channels needed for mechanosensation. Nature 415:1039–1042.

    Article  ADS  Google Scholar 

  • Goodman, M.B., and E.M. Schwarz. 2003. Transducing touch in Caenorhabditis elegans. Annu. Rev. Physiol. 65:429–452.

    Article  Google Scholar 

  • Goulian, M., O.N. Mesquita, D.K. Fygenson, C. Neilsen, O.S. Andersen, and A. Libchaber. 1998. Gramicidin channel kinetics under tension. Biophys. J. 74:328–337.

    ADS  Google Scholar 

  • Gribkoff, V.K., J.E. Atarrett Jr., and S.I. Dworetzky. 2001. Maxi-K potassium channels: Form, function, and modulation of a class of endogenous regulators of intracellular calcium. Neuroscientist 7:166–177.

    Google Scholar 

  • Guharay, F., and F. Sachs. 1984. Stretch-activated single ion channel currents in tissue cultured embryonic chick skeletal muscle. J. Physiol. 352:685–701.

    Google Scholar 

  • Gullingsrud, J., D. Kosztin, and K. Schulten. 2001. Structural determinants of MscL gating studied by molecular dynamics simulations. Biophys. J. 80:2074–2081.

    Google Scholar 

  • Gullingsrud, J., and K. Schulten. 2003. Gating of MscL studied by steered molecular dynamics. Biophys. J. 85:2087–2099.

    Google Scholar 

  • Gustin, M.C., X.-L. Zhou, B. Martinac, and C. Kung. 1988. A mechanosensitive ion channel in the yeast plasma membrane. Science 242:762–765.

    Article  ADS  Google Scholar 

  • Häse, C.C., A.C. Le Dain, and B. Martinac. 1995. Purification and functional reconstitution of the recombinant large mechanosensitive ion channel (MscL) of Escherichia coli. J. Biol. Chem. 270:18329–18334.

    Article  Google Scholar 

  • Hamill, O.P., A. Marty, E. Neher, B. Sackmann, and F.J. Sigworth. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. Eur. J. Physiol. 391:85–100.

    Article  Google Scholar 

  • Hamill, O.P., and D.W. McBride Jr. 1997. Induced membrane hypo/hypermechanosensitivity: A limitation of patch-clamp recording. Ann. Rev. Physiol. 59:621–631.

    Article  Google Scholar 

  • Hamill, O.P., and B. Martinac. 2001. Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81:685–740.

    Google Scholar 

  • Hanaoka, K., F. Qian, A. Boletta, A.K. Bhunia, K. Piontek, L. Tsiokas, V.P. Sukhatme, W.B. Guggino, and G.G. Germino. 2000. Co-assembly of polycystin- 1 and -2 produces unique cation-permeable currents. Nature 408:990–994.

    Article  ADS  Google Scholar 

  • Hansen, D.E., C.S. Craig, and L.M. Hondeghem. 1990. Stretch induced arrhythmias in the isolated canine ventricle. Evidence for the importance of mechanoelectrical feedback. Circulation 81:1094–1105.

    Google Scholar 

  • Hartneck, C., T.D. Plant, and G. Schultz. 2000. From worm to man: Three subfamilies of TRP channels. TINS 23(4):159–166.

    Google Scholar 

  • Hirono, M., C.S. Denis, G.P. Richardson, and P.G. Gillespie. 2004. Hair cells require phophatidylinositol 4,5-bisphosphate for mechanical transduction and adaptation. Neuron 44:309–320.

    Article  Google Scholar 

  • Hong, K., and M. Driscoll. 1994. A transmembrane domain of the putative channel subunit MEC-4 influences mechanotransduction and neurodegeneration in C. elegans. Nature 367:470–473.

    Article  ADS  Google Scholar 

  • Honoré, E., F. Maingret, M. Lazdunski, A.J. Patel. 2002. An intracellular proton sensor commands lipid- and mechano-gating of the K(+) channel TREK-1. EMBO J. 21(12):2968–2976.

    Article  Google Scholar 

  • Howard, J., and S. Bechstedt. 2004. Hypothesis: A helix of ankyrin repeats of the NOMPC-TRP ion channel is the gating spring of mechanoreceptors. Curr. Biol. 14:R224–R226.

    Article  Google Scholar 

  • Huang, M., G. Gu, E.L. Ferguson, and M. Chalfie. 1995. A stomatin-like protein is needed for mechano-sensation in C. elegans. Nature 378:292–295.

    Article  ADS  Google Scholar 

  • Jordt, S.E. et al. 2004. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265.

    Article  ADS  Google Scholar 

  • Katz, B. 1950. Depolarization of sensory terminals and the initiation of impulses in the muscle spindle. J. Physiol. (Lond.) 111:261–282.

    Google Scholar 

  • Kawakubo, T., K. Naruse, T. Matsubara, N. Hotta, and M. Masahiro Sokabe. 1999. Characterization of a newly found stretch-activated KCa, ATP channel in cultured chick ventricular myocytes. Am. J. Physiol. 276:H1827–H1838.

    Google Scholar 

  • Kim, J., Y.D. Chung, D.-Y. Park, S. Choi, D.W. Shin, H. Soh, H.W. Lee, W. Son, J. Yim, C.-S. Park, M.J. Kernan, and C. Kim. 2003. A TRPV family ion channel required for hearing in Drosophila. Nature 424:81–84.

    Article  ADS  Google Scholar 

  • Kloda, A., and B. Martinac. 2001a. Molecular identification of a mechanosensitive ion channel in archaea. Biophys. J. 80:229–240.

    Google Scholar 

  • Kloda, A., and B. Martinac. 2001b. Structural and functional similarities and differences between MscMJLR and MscMJ, two homologous MS channels of M. jannashii. EMBO J. 20:1888–1896.

    Article  Google Scholar 

  • Kloda, A., and B. Martinac. 2001c. Mechanosensitive channel in Thermoplasma a cell wall-less archaea: Cloning and molecular characterization. Cell Biochem. Biophys. 34:321–347.

    Article  Google Scholar 

  • Kloda, A., and B. Martinac. 2001d. Mechanosensitive channels in archaea. Cell Biochem. Biophys. 34:349–381.

    Article  Google Scholar 

  • Kloda, A., and B. Martinac. 2002. Mechanosensitive channels of bacteria and archaea share a common ancestral origin. Eur. Biophys. J. 31:14–25.

    Article  Google Scholar 

  • Kohl, P., and F. Sachs. 2001. Mechanoelectric feedback in cardiac cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359:1173–1185.

    ADS  Google Scholar 

  • Kohler, R., A. Distler, and J. Hoyer. 1999. Increased mechanosensitive currents in aortic endothelial cells from genetically hypertensive rats. J. Hypertens. 17:365–371.

    Article  Google Scholar 

  • Kumánovics, A., G. Levin, and P. Blount. 2003. Family ties of gated pores: Evolution of the sensor module. FASEB J. 16:1623–1629.

    Article  Google Scholar 

  • Kung, C. 2005. A possible unifying principle for mechanosensation. Nature 436:647–654.

    Article  ADS  Google Scholar 

  • Kung, C., and Y. Saimi. 1995. Solute sensing vs. solvent sensing, a speculation. J. Eukaryot. Microbiol. 42:199–200.

    Article  Google Scholar 

  • Kwan K.Y., A.J. Allchorne, M.A. Vollrath, A.P. Christensen, D.S. Zhang, C.J. Woolf and D.P. Corey. 2006. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50(2):177–180.

    Article  Google Scholar 

  • Kung, C., Y. Saimi, and B. Martinac. 1990. Mechanosensitive ion channels in microbes and the early evolutionary origin of solvent sensing. In Protein Interactions, Current Topics in Membranes and Transport. Academic Press, New York, pp. 145–153.

    Google Scholar 

  • Le Dain, A.C., N. Saint, A. Kloda, A. Ghazi, and B. Martinac. 1998. Mechanosensitive ion channels of the archaeon Haloferax volcanii. J. Biol. Chem. 273:12116–12119.

    Article  Google Scholar 

  • Levina, N., S. Totemeyer, N.R. Stokes, P. Louis, M.A. Jones, and I.R. Booth. 1999. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: Identification of genes required for MscS activity. EMBO J. 18:1730–1737.

    Article  Google Scholar 

  • Li, Y., P.C. Moe, S. Chandrasekaran, I.R. Booth, and P. Blount. 2002. Ionic regulation of MscK, a mechanosensitive channel from Escherichia coli. EMBO J. 21:5323–5330.

    Article  Google Scholar 

  • Liedtke, W., Y. Choe, M.A. Marti-Renom, A.M. Bell, C.S. Denis, A. Sali, A.J. Hudspeth, J.M. Friedman, and S. Heller. 2000. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103:525–535.

    Article  Google Scholar 

  • Lin, S.-Y., and D.P. Corey. 2005. TRP channels in mechanosensation. Curr. Opin. Neurobiol. 15:350–357.

    Article  Google Scholar 

  • Lingueglia, E., G. Champigny, M. Lazdunski, and P. Barbry. 1995. Cloning of the amiloride-sensitive FMRFamide peptide-gated sodium channel. Nature 378(6558):730–733.

    Article  ADS  Google Scholar 

  • Loewenstein, W.R. 1959. The generation of electric activity in a nerve ending. Ann. N.Y. Acad. Sci. 81:367–387.

    Article  ADS  Google Scholar 

  • Machemer, H., and A. Ogura. 1979. Ionic conductances of membranes in ciliated and deciliated Paramecium. J. Physiol. 296:49–60.

    Google Scholar 

  • Maingret, F., M. Fosset, F. Lesage, M. Lazdunski, and E. Honoré. 1999a. Traak is a mammalian neuronal mechano-gated K+ channel. J. Biol. Chem. 274:1381–1387.

    Article  Google Scholar 

  • Maingret, F., E. Honore, M. Lazdunski, and A.J. Patel. 2002. Molecular basis of the voltage-dependent gating of TREK-1, a mechano-sensitive K(+) channel. Biochem. Biophys. Res. Commun. 292(2):339–346.

    Article  Google Scholar 

  • Maingret, F., I. Lauritzen, A.J. Patel, C. Heurteaux, R. Reyes, F. Lesage, M. Lazdunski, and E. Honore. 2000a. TREK-1 is a heat-activated background K(+) channel. EMBO J. 19(11):2483–2491.

    Article  Google Scholar 

  • Maingret, F., A.J. Patel, F. Lesage, M. Lazdunski, and E. Honore. 1999b. Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J. Biol. Chem. 274(38):26691–26696.

    Article  Google Scholar 

  • Maingret, F., A.J. Patel, F. Lesage, M. Lazdunski, and E. Honore. 2000b. Lysophospholipids open the two-pore domain mechano-gated K+ channels TREK-1 and TRAAK. J. Biol. Chem. 275:10128–10133.

    Article  Google Scholar 

  • Markin, V.S., and B. Martinac. 1991. Mechanosensitive ion channels as reporters of bilayer expansion. A theoretical model. Biophys. J. 60:1120–1127.

    ADS  Google Scholar 

  • Maroto, R., A. Raso, T.G. Wood, A. Kurosky, B. Martinac, and O.P. Hamill. 2005. TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat. Cell Biol. 7(2):179–185.

    Article  Google Scholar 

  • Martinac, B. 1993. Mechanosensitive ion channels: biophysics and physiology. In: Thermo-dynamics of Membrane Receptors and Channels. M.B. Jackson (ed.) CRC Press, Boca Raton, FL, pp. 327–351.

    Google Scholar 

  • Martinac, B. 2001. Mechanosensitive channels in prokaryotes. Cell. Physiol. Biochem. 11:61–76.

    Article  Google Scholar 

  • Martinac, B. 2004. Mechanosensitive ion channels: Molecules of mechanotransduction. J. Cell Sci. 117:2449–2460.

    Article  Google Scholar 

  • Martinac, B., J. Adler, and C. Kung. 1990. Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348:261–263.

    Article  ADS  Google Scholar 

  • Martinac, B., M. Buechner, A.H. Delcour, J. Adler, and C. Kung. 1987. Pressure sensitive ion channel in Escherichia coli. Proc. Natl. Acad. Sci. USA 84:2297–2301.

    Article  ADS  Google Scholar 

  • Martinac, B., A.H. Delcour, M. Buechner, J. Adler, and C. Kung. 1992. Mechanosensitive ion channels in bacteria. In: Comparative Aspects of Mechanoreceptor Systems. F. Ito, editor. Springer-Verlag, Berlin, pp. 3–18.

    Google Scholar 

  • Martinac, B., and O.P. Hamill. 2002. Gramicidin A channels switch between stretch activation and stretch inactivation depending on bilayer thickness. Proc. Natl. Acad. Sci. USA 99:4308–4312.

    Article  ADS  Google Scholar 

  • Martinac, B., and A. Kloda. 2003. Evolutionary origins of mechanosensitive ion channels. Prog. Biophys. Mol. Biol. 82:11–24.

    Article  Google Scholar 

  • Martinac, B., X.-L. Zhou, A. Kubalski, S. Sukharev, and C. Kung. 1994. Microbial channels. In: Handbook of Membrane Channels: Molecular and Cellular Physiology. C. Perrachia, editor. Academic Press, New York, pp. 447–459.

    Google Scholar 

  • McLaggan, D., M.A. Jones, G. Gouesbet, N. Levina, S. Lindey, W. Epstein, and I.R. Booth. 2002. Analysis of the kefA2 mutation suggests that KefA is a cation-specific channel involved in osmotic adaptation in Escherichia coli. Mol. Microbiol. 43(2):521–536.

    Article  Google Scholar 

  • Minke, B., and B. Cook. 2002.TRPchannel proteins and signal transduction. Physiol. Rev. 82:429–472.

    Google Scholar 

  • Montell, C. 2003. Thermosensation: Hot findings make TRPNs very cool. Curr. Biol. 13:R476–R478.

    Article  Google Scholar 

  • Montell, C., L. Birnbaumer, and V. Flockerzi. 2002. The TRP channels, a remarkably functional family. Cell 108:595–598.

    Article  Google Scholar 

  • Morris, C.E. 1990. Mechanosensitive ion channels. J. Membr. Biol. 113:93–107.

    Article  Google Scholar 

  • Naitoh, Y. 1984. Mechanosensory transduction in protozoa. In: Membranes and Sensory Transduction. G. Colombetti and F. Lenci, editors. Plenum Press, New York.

    Google Scholar 

  • Nauli, S.M., F.J. Alenghat, Y. Luo, E. Williams, P. Vassilev, X. Li, A.E.H. Elia, W. Lu, E.M. Brown, S.J. Quinn, D.E. Ingber, and J. Zhou. 2003. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33:129–137.

    Article  Google Scholar 

  • Nauli, S.M., and J. Zhou. 2004. Polycystins and mechanosensation in renal and nodal cilia. Bioassays 26(8):844–856.

    Article  Google Scholar 

  • North, R.A. 1996. Families of ion channels with two hydrophobic segments. Curr. Opin. Cell Biol. 8:474–483.

    Article  Google Scholar 

  • O’Hagan, R., M. Chalfie, and M. Goodman. 2005. The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat. Neurosci. 8:43–50.

    Article  Google Scholar 

  • Okada, K., P.C. Moe, and P. Blount. 2002. Functional design of bacterial mechanosensitive channels. J. Biol. Chem. 277:27682–27688.

    Article  Google Scholar 

  • Pace, N.R. 1997. A molecular view of microbial diversity and the biosphere. Science 276:734–740.

    Article  Google Scholar 

  • Patel, A., E. Honoré, F. Maingret, F. Lesage, M. Fink, F. Duprat, and M. Lazdunski. 1998. A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J. 17:4283–4290.

    Article  Google Scholar 

  • Patel, A.J., E. Honore, F. Lesage, M. Fink, G. Romey, M. Lazdunski. 1999. Inhalational anesthetics activate two-pore-domain background K+ channels. Nat. Neurosci. 2:422–426.

    Article  Google Scholar 

  • Patel, A.J., E. Honore, and M. Lazdunski. 2001. Lipid and mechano-gated 2P domain K+ channels. Curr. Opin. Cell Biol. 13:422–428.

    Article  Google Scholar 

  • Perozo, E., D.M. Cortes, P. Sompornpisut, A. Kloda, and B. Martinac. 2002a. Structure of MscL in the open state and the molecular mechanism of gating in mechanosensitive channels. Nature 418:942–948.

    Article  ADS  Google Scholar 

  • Perozo, E., A. Kloda, D.M. Cortes, and B. Martinac. 2002b. Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat. Struct. Biol. 9:696–703.

    Article  Google Scholar 

  • Perozo, E., and D.C. Rees. 2003. Structure and mechanism in prokaryotic mecahnosensitive channels. Curr. Opin. Struct. Biol. 13:432–442.

    Article  Google Scholar 

  • Pickard, B.G., and J.P. Ding. 1992. Gravity sensing by higher plants. In: Comparative Aspects of Mechanoreceptor Systems. F. Ito, editor. Springer-Verlag, Berlin, pp. 81–110.

    Google Scholar 

  • Pivetti, C.D., M.-R. Yen, S. Mille, W. Busch, Y.-H. Tseng, I.R. Booth, and M.H. Saier Jr. 2003. Two families of mechanosensitive channel proteins. Microbiol. Mol. Biol. Rev. 67(1):66–85.

    Article  Google Scholar 

  • Qi, Z., S. Chi, X. Su, K. Naruse, and M. Sokabe. 2005. Activation of a mechanosensitive BK channel by membrane stress created with amphipaths. Mol. Membr. Biol. 22(6):519–527.

    Article  Google Scholar 

  • Qi, Z., K. Naruse, and M. Sokabe. 2003. Ionic amphipaths affect gating of a stretch activated BK channel (SAKCa) cloned from chick heart. Biophys. J. 84:A234.

    Google Scholar 

  • Ronan, D., and P. Gillespie. 2005. Metazoan mechanotransduction mystery finally solved. Nat. Neurosci. 8:7–8.

    Article  Google Scholar 

  • Rossetti, S. et al. 2003. Association of mutation position in polycystic kidney disease 1 (PKD1) gene and development of a vascular phenotype. Lancet 361(9376):2196–2201.

    Article  Google Scholar 

  • Sachs, F. 1988. Mechanical transduction in biological systems. CRC Crit. Revs. Biomed. Eng. 16:141–169.

    Google Scholar 

  • Sachs, F. 2004a. Heart Mechanoelectric Transduction. In Cardiac electrophysiology; From Cell to Bedside (eds.), Jalife, J. and Zipes, D., pp. 96–102. Saunders (Elsevier), Philadelphia.

    Google Scholar 

  • Sachs, F. 2004b. Stretch-activated channels in the heart. In Cardiac Mechano-Electric Feedback and Arrhythmias: From Pipette to Patient (eds.) Kohl, P., Franz, M.R. and Sachs, F. Saunders (Elsevier), Philadelphia.

    Google Scholar 

  • Sachs, F., and C.E. Morris. 1998. Mechanosensitive ion channels in nonspecialized cells. Revs. Physiol. Biochem. Pharmacol. 132:1–77.

    Article  Google Scholar 

  • Schild, L., E. Schneeberger, I. Gautschi, and D. Firsov. 1997. Identification of amino acid residues in the alpha, beta, and gamma subunits of the epithelial sodium channel (ENaC) involved in amiloride block and ion permeation. J. Gen. Physiol. 109:15–26.

    Article  Google Scholar 

  • Sidi, S., R.W. Friedrich, and T. Nicolson. 2003. NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301:96–99.

    Article  ADS  Google Scholar 

  • Sigurdson, W.J., A. Ruknudin, and F. Sachs. 1992. Calcium imaging of mechanically induced fluxes in tissue cultured chick heart: The role of stretch-activated ion channels. Am. J. Physiol. 262:H1110-H1115.

    Google Scholar 

  • Sleator, R.D., and C. Hill. 2001. Bacterial osmoadaptation: The role of osmolytes in bacterial stress and virulence. FEMS Microbiol. Rev. 26:49–71.

    Article  Google Scholar 

  • Sokabe, M., and F. Sachs. 1990. The structure and dynamics of patch clamped membrane: A study using differential interference contrast microscopy. J. Cell Biol. 111:599–606.

    Article  Google Scholar 

  • Sokabe, M., F. Sachs, and Z. Jing. 1991. Quantitative video microscopy of patch clamped membranes: Stress, strain, capacitance and stretch channel activation. Biophys. J. 59:722–728.

    Article  ADS  Google Scholar 

  • Sotomayor, M., D.P. Corey, and K. Schulten. 2005. In search of the hair-cell gating spring: Elastic properties of ankyrin and cadherin repeats. Structure 13:669–682.

    Article  Google Scholar 

  • Stokes, N.R., H.D. Murray, C. Subramaniam, R.L. Gourse, P. Louis, W. Bartlett, S. Miller, and I.R. Booth. 2003. A role for mechanosensitive channels in survival of stationary phase: Regulation of channels expression by RpoS. Proc. Natl. Acad. Sci. USA 100:15959–15964.

    Article  ADS  Google Scholar 

  • Sukharev, S. 2002. Purification of the small mechanosensitive channel of Escherichia coli (MscS): The subunit structure, conduction, and gating characteristics in liposomes. Biophys. J. 83:290–298.

    ADS  Google Scholar 

  • Sukharev, S.I., P. Blount, B. Martinac, F.R. Blattner, and C. Kung. 1994. A large mechanosensitive channel in E. coli encoded by mscL alone. Nature 368:265–268.

    Article  ADS  Google Scholar 

  • Sukharev, S.I., P. Blount, B. Martinac, and C. Kung. 1997. Mechanosensitive channels of Escherichia coli: The MscL gene, protein, and activities. Annu. Rev. Physiol. 59:633–657.

    Article  Google Scholar 

  • Sukharev, S., M. Betanzos, C.S. Chiang, and H.R. Guy. 2001. The gating mechanism of the large mechanosensitive channel MscL. Nature 409:720–724.

    Article  ADS  Google Scholar 

  • Sukharev, S.I., and D. Corey. 2004. Mechanosensitive channels: Multiplicity of families and gating paradigms. Science’s STKE www.stke.org/cgi/content/full/sigtrans;2004/219/re4, pp. 1–24.

    Google Scholar 

  • Sukharev, S.I., B. Martinac, V.Y. Arshavsky, and C. Kung. 1993. Two types of mechanosensitive channels in the E. coli cell envelope: Solubilization and functional reconstitution. Biophys. J. 65:177–183.

    ADS  Google Scholar 

  • Suzuki, M., J. Sato, K. Kutsuwada, G. Ooki, and M. Imai. 1999. Cloning of a stretchinhibitable nonselective cation channel. J. Biol. Chem. 274:6330–6335.

    Article  Google Scholar 

  • Szallasi, A., and P.M. Blumberg. 1990. Resiniferatoxin and analogs provide novel insights into the pharmacology of vanilloid (capsaicin) receptors. Life Sci. 47:1399–1408.

    Article  Google Scholar 

  • Szallasi, A., and P.M. Blumberg. 1999. Vanilloid (capsaicin) receptors and mechanisms. Pharmacol. Rev. 51:159–211.

    Google Scholar 

  • Tanaka, T., Y. Tamba, S.Md. Masum, Y. Yamashita, and M. Yamazaki. 2002. La3+ and Gd3+ induce shape change of giant unilamellar vesicles of phosphatidylcholine. Biochim. Biophys. Acta 1564(1):173–182.

    Article  Google Scholar 

  • Tang, Q.Y., Z. Qi, K. Naruse, and M. Sokabe. 2003. Characterization of a functionally expressed stretch-activated BKCa channel cloned from chick ventricular myocytes. J. Membr. Biol. 196:185–200.

    Article  Google Scholar 

  • Tavernarakis, N., and M. Driscoll. 1997. Molecular modelling of mechanotransduction in the nematode Caenorhabditis elegans. Annu. Rev. Physiol. 59:659- -689.

    Article  Google Scholar 

  • Tavernarakis, N., W. Shreffler, S. Wang, and M. Driscoll. 1997. unc-8, a DEG/ENaC family member, encodes a subunit of a candidate mechanically-gated channel that modulates locomotion in C. elegans. Neuron 18:107–119.

    Article  Google Scholar 

  • Terrenoire, C., I. Lauritzen, F. Lesage, G. Romey, M. Lazdunski. 2001. A TREK-1- like potassium channel in atrial cells inhibited by beta-adrenergic stimulation and activated by volatile anesthetics. Circ. Res. 89(4):336–342.

    Article  Google Scholar 

  • Ubl, J., H. Maurer, and H.-A. Kolb. 1988. Ion channels activated by osmotic and mechanical stress in membranes of opposum kidney cells. J. Membr. Biol. 104:223–232.

    Article  Google Scholar 

  • Voets, T., K. Talavera, G. Owsianik, and B. Nilius. 2005. Sensing with TRP channels. Nat. Chem. Biol. 1:85–92.

    Article  Google Scholar 

  • Waldmann, R., and M. Lazdunski. 1998. H+-gated cation channels; neuronal acid sensors in the NaC/Deg family of ion channels. Curr. Opin. Neurobiol. 8:418–424.

    Article  Google Scholar 

  • Walker, R.G., A.T. Willingham, and C.S. Zuker. 2000. A Drosophilia mechanosensory transduction channel. Science 287:2229–2234.

    Article  ADS  Google Scholar 

  • Wood, J.M. 1999. Osmosensing by bacteria: Signals and membrane-based sensors. Microbiol. Mol. Biol. Rev. 63:230–262.

    Google Scholar 

  • Yeung, E.W., N.P. Whitehead, T.M. Suchyna, P.A. Gottlieb, S. Sachs and D.G. Allen. 2005. Effects of stretch-activated channel blockers on [Ca2+]i and muscle damage in the mdx mouse. J. Physiol. 562:367–380.

    Article  Google Scholar 

  • Yoshimura, K., A. Batiza, M. Schroeder, P. Blount, and C. Kung. 1999. Hydrophilicity of a single residue within MscL correlates with increased mechanosensitivity. Biophys. J. 77:1960–1972.

    Google Scholar 

  • Yoshimura, K., T. Nomura, and M. Sokabe. 2004. Loss-of-function mutations at the rim of the funnel of mechanosensitive channel MscL. Biophys. J. 86:2113–2120.

    ADS  Google Scholar 

  • Zhang, Y., G. Gao, V.L. Popov, and O.P. Hamill. 2000. Mechanically gated channel activity in cytoskeleton deficient plasma membrane blebs and vesicles. J. Physiol. (Lond.) 523:117–129.

    Article  Google Scholar 

  • Zhou, X.-L., A.F. Batiza, S.H. Loukin, C.P. Palmer, C. Kung, and Y. Saimi. 2003. The transient receptor potential channel on the yeast vacuole is mechanosensitive. Proc. Natl. Acad. Sci. USA 100(12):7105–7110.

    Article  ADS  Google Scholar 

  • Zhou, X.-L., S.H. Loukin, C. Coria, C. Kung, and Y. Saimi. 2005. Heterologously expressed fungal transient receptor potential channels retain mechanosensitivity in vitro and osmotic response in vivo. Eur. Biophys. J. 34:413–422.

    Article  Google Scholar 

  • Zoratti, M., and A. Ghazi. 1993. Stretch-activated channels in prokaryotes. In Alkali Transport Systems in Prokaryotes. E.P. Bakker (ed.), pp. 349–358, Boca Raton, CRC Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Martinac, B. (2007). Mechanosensitive Channels. In: Chung, SH., Andersen, O.S., Krishnamurthy, V. (eds) Biological Membrane Ion Channels. Biological And Medical Physics Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/0-387-68919-2_10

Download citation

Publish with us

Policies and ethics