Skip to main content

Application of the PC-SAFT Equation of State to Asphaltene Phase Behavior

  • Chapter
Asphaltenes, Heavy Oils, and Petroleomics

Abstract

A method to characterize crude oil including asphaltenes using the perturbed chain form of the statistical associating fluid theory (PC-SAFT) is presented. The theory accurately predicts the bubble point, density, and asphaltene precipitation onset for the oil. Examples showthat the theory predicts asphaltene instability due to changes in pressure, temperature, and fluid composition. Further work demonstrates the effect of asphaltene polydispersity and resins on the phase behavior of asphaltenes. The approach demonstrates that laboratory and field observations of asphaltene phase behavior can be explained based only on molecular size and van der Waals interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chapman, W.G., G. Jackson, and K.E. Gubbins (1988). Phase equilibria of associating fluids—Chain molecules with multiple bonding sites. Mol. Phys. 65, 1057–1079

    Article  CAS  Google Scholar 

  2. Chapman, W.G., K.E. Gubbins, G. Jackson, and M. Radosz (1989). SAFT: Equation-of-state model for associating fluids. Fluid Phase Equil. 52, 31–38.

    Article  CAS  Google Scholar 

  3. Chapman, W.G., K.E. Gubbins, G. Jackson, and M. Radosz (1990). New reference equation of state for associating liquids. Ind. Eng. Chem. Res. 29, 1709–1721.

    Article  CAS  Google Scholar 

  4. Gross, J. and G. Sadowski (2001). Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules. Ind. Eng. Chem. Res. 40, 1244–1260.

    Article  CAS  Google Scholar 

  5. Wiehe, I.A. and K.S. Liang (1996). Asphaltene, resins, and other petroleum macromolecules. Fluid Phase Equil. 117, 201–221.

    Article  CAS  Google Scholar 

  6. Haskett, C.E. and M. Tartera (1965). Practical solution to problem of asphaltene deposits—Hassi Messaoud field, Algeria. J. Pet. Technol. 17, 387–391.

    Google Scholar 

  7. Tuttle, R.N. (1983). High-pour and asphaltic crude oils and condensates. J Pet. Technol. 35, 1192–1196.

    Google Scholar 

  8. Adialalis, S. (1982). Investigation of Physical and Chemical Criteria as Related to the Prevention of Asphalt Deposition in Oil Well Tubings. PhD Thesis, Imperial College.

    Google Scholar 

  9. Chavez, A.J.L. and M.A. Lory (1991). Estudio sobre la depositacion de material orgánico en instalaciones de producción del area marina de Campeche. Revista del Instituto Mexicano del Petroleo. 22, 55–67.

    Google Scholar 

  10. Escobedo, J. and G.A. Mansoori (1995). Asphaltene and other Heavy-Organic Particle Deposition during Transfer and Production Operations. In: SPE Annual Technical Conference and Exhibition Production Operations and Engineering, Dallas, TX, pp. 343–358.

    Google Scholar 

  11. von Albrecht, C., W.M. Salathiel, and D.E. Nierode (1977). Stimulation of asphaltic deep wells and shallow wells in Lake Maracaibo, Venezuela. Advances in Methods of Increasing Well Productivity and Injectivity. Can. Pet. Technol, J., Oil Sands PD7(1), 55–62.

    Google Scholar 

  12. Wu, J. (1998). Molecular Thermodynamics of Some Highly Asymmetric Liquid Mixtures. PhD Thesis, University of California at Berkeley.

    Google Scholar 

  13. Prausnitz, J.M., R.N. Lichtenthaler, and E.G. de Azevedo (1986). Molecular Thermodynamics of Fluid-Phase Equilibria, 2nd edn. P T R Prentice-Hall, New Jersey, U.S.A.

    Google Scholar 

  14. Wang, J.X. (2000). Predicting Asphaltene Flocculation in Crude Oils. PhD Thesis, New Mexico Institute of Mining & Technology.

    Google Scholar 

  15. Hirschberg, A., L.N.J. deJong, B.A. Schipper, and J.G. Meijer (1984). Influence of temperature and pressure on asphaltene flocculation. SPEJ, Soc. Pet. Eng. J. 24, 283–293.

    CAS  Google Scholar 

  16. Akbarzadeh, K., S. Ayatollah!, M. Moshfeghian, H. Alboudwarej, W.Y. Svrcek, and H.W. Yarranton (2002). Regular solution model for asphaltene precipitation from bitumens and solvents. In: American Institute of Chemical Engineers Spring National Meeting. New Orleans, LA, pp. 218–224.

    Google Scholar 

  17. Cimino, R., S. Correra, and P.A. Sacomani (1995). Thermodynamic Modeling for Prediction of Asphaltene Deposition in Live Oils. In: Proceedings Soc. Pet. Eng. Intl. Symp. on Oilfield Chem. San Antonio, TX, pp. 499–512.

    Google Scholar 

  18. Nghiem, L.X., M.S. Hassam, R. Nutakki, and A.E.D. George (1993). Efficient Modeling of Asphaltene Precipitation In: Proceedings Soc. Pet. Eng. Annual Tech. Conf. and Exhib. Houston, TX. pp. 375–384.

    Google Scholar 

  19. Ting, P.D., G. J Hirasaki, and W.G. Chapman (2003). Modeling of asphaltene phase behavior with the SAFT equation of state. Pet. Sci. Tech. 21, 647–661.

    Article  CAS  Google Scholar 

  20. Ting, P.D. (2003). Thermodynamic Stability and Phase Behavior of Asphaltenes in Oil and of other highly Asymmetric Mixtures. PhD Thesis, Rice University.

    Google Scholar 

  21. Chung, F., P. Sarathi, and R. Jones (1991). Modeling of Asphaltene and Wax Precipitation, NIPER–498, DOE Topical Report, Bartlesville, OK.

    Google Scholar 

  22. Burke, N.B., R.E. Hobbs, and S.F. Kashou (1990). Measurement and modeling of asphaltene precipitation. J. Pet. Technol. 42, 1440–1446.

    CAS  Google Scholar 

  23. Wang, J.X., J.S. Buckley, N.A. Burke, and J.L. Creek (2003). A Two-Component Solubility Model of the Onset of Asphaltene Flocculation in Crude Oils. Paper 15254 presented at the 2003 SPE Offshore Technology Conference, Houston, May 5–7; Wang, J.X. and J.S. Buckley (2001). Energy Fuels 15, 1004–1012.

    Google Scholar 

  24. Nghiem, L.X. and D.A. Coombe (1997). Modeling asphaltene precipitation during primary depletion. Soc. Pet. Eng. J. SPE 36106, 2, 170–176.

    Google Scholar 

  25. Ting, P.D., P.C. Joyce, P.K. Jog, W.G. Chapman, and M.C. Thies (2002). Phase equilibrium modeling of mixtures of long-chain and short-chain alkanes using peng-robinson and SAFT. Fluid Phase Equil. 206, 267–286.

    Article  Google Scholar 

  26. Leontaritis, K.J. and G.A. Mansoori (1987). Asphaltene flocculation during oil production and processing: A thermodynamic colloidal model. In: Society of Petroleum Engineers of AIME. San Antonio, TX, pp. 149–158.

    Google Scholar 

  27. Victorov, A.I. and A. Firoozabadi (1996). Thermodynamic micellization model of asphaltene precipitation from petroleum fluids. Am. Inst. Chem. Eng. J. 42, 1753–1764.

    CAS  Google Scholar 

  28. Wu, J., J.M. Prausnitz, and A. Firoozabadi (1998). Molecular-thermodynamic framework for asphaltene-oil equilibria. Am. Inst. Chem. Eng. J. 44, 1188–1199.

    CAS  Google Scholar 

  29. Wu, J., J.M. Prausnitz, and A. Firoozabadi (2000). Molecular thermodynamics of asphaltene precipitation in reservoir fluids. Am. Inst. Chem. Eng. J. 46, 197–209.

    CAS  Google Scholar 

  30. Bungert, B. (1998). Modeling Polymer Systems Using the Perturbed-Chain Statistical Associating Fluid Theory Equation of State. Komplexe Phasengleichgewichte von Polymerlösungen. Dissertation, Technische Universität Berlin, Germany. Gross, J. and G. Sadowski (2002). Ind. Eng. Chem. Res. 41, 1084–1093.

    Google Scholar 

  31. Wiehe, I.A. (1996). Two-dimensional solubility parameter mapping of heavy oils. Fuel Sei. Tech. Intl. 14, 289–312.

    CAS  Google Scholar 

  32. Moore, E.W., C.W. Crowe, and A. R. Hendrickson (1965). Formation effect and prevention of asphaltene sludges during stimulation treatments. J Pet. Technol. 17, 1023–1028.

    CAS  Google Scholar 

  33. Chang, C.L. and H.S. Fogler (1993). Asphaltene Stabilization in Alkyl Solvents using Oil-Soluble Amphiphiles. In: Soc. Pet. Eng. Intl. Symp. on Oilfield Chem. New Orleans, LA, pp. 339–349.

    Google Scholar 

  34. Groenzin, H. and O.C. Mullins (1999). Asphaltene molecular size and structure. J. Phys. Chem. A 103, 11237–11245.

    Article  CAS  Google Scholar 

  35. Economou, I. G. (2002). Statistical associating fluid theory: A successful model for the calculation of thermodynamic and phase equilibrium properties of complex fluid mixtures; Economou, I.G. (2002). Molecular Modelling of Materials Laboratory, Institute of Physical Chemistry, National Research Center for Physical Sciences “Demokritos”, GR-15310 Aghia Paraskevi Attikis, Greece. Ind. Eng. Chem. Res. 41, 953–962.

    Google Scholar 

  36. Muller, E. A. and K.E. Gubbins (2001). Molecular-based equations of state for associating fluids: A review of SAFT and related approaches. Ind. Eng. Chem. Res. 40, 2193–2212.

    Article  Google Scholar 

  37. Jog, P.K., W.G. Chapman, S.K. Gupta, and R.D. Swindoll (2002). Modeling of liquid-liquid-phase separation in linear low-density polyethylene-solvent systems using the statistical associating fluid theory equation of state. Ind. Eng. Chem. Res. 41, 887–891.

    Article  CAS  Google Scholar 

  38. Wertheim, M.S. (1984). Fluids with highly directional attractive forces. I. Statistical thermodynamics. J. Stat. Phys. 35, 19.

    Article  Google Scholar 

  39. Wertheim, M.S. (1984). Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations. J Stat. Phys. 35, 35–47.

    Article  Google Scholar 

  40. Wertheim, M.S. (1986). Fluids with highly directional attractive forces. III. Multiple attraction sites. J. Stat. Phys. 42, 459–476.

    Article  Google Scholar 

  41. Wertheim, M.S. (1986). Fluids with highly directional attractive forces. IV. Equilibrium polymerization. J. Stat. Phys. 42, 477–492.

    Article  Google Scholar 

  42. Chapman, W.G. (1990). Prediction of the thermodynamic properties of associating lennard-jones fluids: Theory and simulation. J. Chem. Phys. 93, 4299–4304.

    Article  Google Scholar 

  43. Kraska, T. and K.E. Gubbins (1996). Phase equilibria calculations with a modified SAFT equation of state. 1. Pure alkanes, alkanols, and water. Ind. Eng. Chem. Res. 35, 4727–4737.

    Article  CAS  Google Scholar 

  44. GilVillegas, A., A. Galindo, P.J. Whitehead, S.J. Mills, G. Jackson, and A.N. Burgess (1997). Statistical association fluid theory for chain molecules with attractive potentials of variable range. J. Chem. Phys. 106, 4168–186.

    Article  CAS  Google Scholar 

  45. DIPPR Database (2003). Design Institute for Physical Properties, Brigham Young University, UT.

    Google Scholar 

  46. Huang, S.H. and M. Radosz (1990). Equation of state for small, large, polydisperse, and associating molecules. Ind. Eng. Chem. Res. 29, 2284–2294.

    Article  CAS  Google Scholar 

  47. Ting, P.D. (2003). Thermodynamic Stability and Phase Behavior of Asphaltenes in Oil and of other highly Asymmetric Mixtures. PhD Thesis. Rice University.

    Google Scholar 

  48. Kidnay, A.F., R.C. Miller, W.R. Parrish, and M.J. Hiza (1975). Liquid-vapour phase equilibria in the N2-CH4 system from 130 to 180 K. Cryogenics 15, 531–540.

    Article  CAS  Google Scholar 

  49. Reamer, H.H., B.H. Sage, and W.N. Lacey (1950). Phase equilibria in hydrocarbon systems: Volumetric and phase behavior of the methane-propane system. Ind. Eng. Chem. 42, 534.

    Article  CAS  Google Scholar 

  50. Grauso, L., A. Fredenslund, and J. Mollerup (1977). Vapour-liquid equilibrium data for the systems C2H6+N2, C2H4+N2, C3H8+N2, and C3H6+N2. Fluid Phase Equil. 1, 13–26.

    Article  Google Scholar 

  51. Reamer, H.H., R.H. Olds, B.H. Sage, and W.N. Lacey (1942). Phase equilibria in hydrocarbon systems. Ind. Eng. Chem. 34, 1526–1531.

    Article  CAS  Google Scholar 

  52. Elbishlawi, M. and J.R. Spencer (1951). Equilibrium relations of two methane-aromatic binary systems at 150F. Ind. Eng. Chem. 43, 1811–1815.

    Article  CAS  Google Scholar 

  53. Azarnoosh, A. and J.J. McKetta (1963). Nitrogen-n-decane system in the two-phase region. J. Chem. Eng. Data 8, 494–496.

    Article  CAS  Google Scholar 

  54. Joyce, P.C. (1999). Vapor-Liquid Equilibria for the Hexane+Tetracosane and Hexane+Hexatriacontane Systems at Elevated Temperatures and Pressures. Vapor-Liquid Equilibria for Long-Chain Hydrocarbons in Supercritical Alkane Solvents. PhD Thesis, Clemson University; Joyce, P.C., J. Gordon, and M.C. Thies (2000). J. Chem. Eng. Data 45, 424–427. Joyce, P.C. and M.C. Thies (1998). Vapor-liquid equilibria for the hexane + hexadecane and hexane + 1-hexadecanol systems at elevated temperatures and pressures. J. Chem. Eng. Data 43, 819–822.

    Google Scholar 

  55. Miller, P. and B.F. Dodge (1940). The system benzene-nitrogen: Liquid-vapor phase equilibria at elevated pressures. Ind. Eng. Chem. 32, 434–438.

    Article  CAS  Google Scholar 

  56. Glanville, J.W., B.H. Sage, and W.N. Lacey (1950). Volumetric and phase behavior of propane-benzene system. Ind. Eng. Chem. 42, 508.

    Article  CAS  Google Scholar 

  57. Messow, U. and I. Engel (1977). Thermodynamische Untersuchungen an Losungsmittel/n-Paraffin-Systemen. Z. Phys. Chem. 258, 798.

    CAS  Google Scholar 

  58. Buckley, J.S., G.J. Hirasaki, Y. Liu, S. von Drasek, J. Wang, and B.S. Gill (1998). Asphaltene precipitation and solvent properties of crude oils. Pet. Sci. Technol. 16, 251–285.

    Article  CAS  Google Scholar 

  59. Jamaluddin, A.K.M., N. Joshi, F. Iwere, and O. Gurnipar (2001). An investigation of asphaltene instability under nitrogen injection. Presented at the Society of Petroleum Engineers International Petroleum Conference and Exhibition, Villahermosa, Mexico, SPE 74393.

    Google Scholar 

  60. Gonzalez, D.L., P.D. Ting, G.J. Hirasaki, and WG. Chapman (2005). Prediction of asphaltene i nstability under gas injection with the PC-SAFT equation of state. Energy Fuels 19, 1230–1234.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Ting, P.D., Gonzalez, D.L., Hirasaki, G.J., Chapman, W.G. (2007). Application of the PC-SAFT Equation of State to Asphaltene Phase Behavior. In: Mullins, O.C., Sheu, E.Y., Hammami, A., Marshall, A.G. (eds) Asphaltenes, Heavy Oils, and Petroleomics. Springer, New York, NY. https://doi.org/10.1007/0-387-68903-6_12

Download citation

Publish with us

Policies and ethics