Skip to main content

Trends and Advances in Cryogenic Materials

  • Chapter
Cryogenic Engineering

Part of the book series: International Cryogenics Monograph Series ((ICMS))

Abstract

Increased emphasis has been placed on research and development of specialized materials for use in low-temperature applications. Most research has been driven by (1) the construction of large superconducting coils, (2) requirements for transport and storage of liquefied natural gas, and (3) the discovery of superconductors with critical temperatures Tc as high as 90 K. The integration between structural design and material properties for critical low-temperature applications has been facilitated by the incorporation of fracture mechanics concepts. This development has led to measurement of an entirely new set of mechanical properties at low temperatures, to increased nondestructive inspection to measure in-situ flaw sizes, and to the development of fracture control practices for a number of cryogenic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Advances in Cryogenic Engineering (Materials), Vols. 22–46 (even numbers only), Plenum Press, New York, 1977–2000; vols. 48, 50, American Institute of Physics, New York, 2002, 2004.

    Google Scholar 

  2. Hertzberg, R.W., Deformation and Fracture Mechanics of Engineering Materials, John Wiley, New York, 1989.

    Google Scholar 

  3. Dieter, G.C., Mechanical Metallurgy, McGraw-Hill, New York, 1986.

    Google Scholar 

  4. Tada, H., Paris, P.C., and Irvin, G.R., The Stress Analysis of Cracks Handbook, Del Research, Hellertown, PA, 1973.

    Google Scholar 

  5. Shi, G.C.M., Handbook of Stress Intensity Factors, Lehigh University, Bethlehem, PA, 1973.

    Google Scholar 

  6. Murakami, Y., ed., Stress Intensity Factors Handbook, Pergamon Press, Oxford, 1987.

    Google Scholar 

  7. “Standard Test Method for Plain-Strain Fracture Toughness of Metallic Materials”, Section 3, Annual Book of ASTM Standards, E399-90, American Society for Testing and Materials, Philadelphia, PA, 1993.

    Google Scholar 

  8. “Standard Test Method for JIc, A Measure of Fracture Toughness”, Annual Book of ASTM Standards, E813-89, American Society for Testing and Materials, Philadelphia, PA, 1993.

    Google Scholar 

  9. “Pressure Vessels”, Section VIII ASME Boiler and Pressure Vessel Code, American Society of Mechanical Engineers, New York, 1998.

    Google Scholar 

  10. “Standard Test Method for Measurement of Fatigue Crack Growth Rates”, Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, PA, 1993.

    Google Scholar 

  11. Ross, J., “Superconducting A.C. Generators Trial Rotor Forging Investigation”, IRD/TM 78-47, EED/AP62/TM-174, International Research and Development Company, Ltd., Newcastle upon Tyne, England, 1978.

    Google Scholar 

  12. Hwang, I., “Mechanical Properties of Alcator C-MOD Superstructure Materials, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1991.

    Google Scholar 

  13. Tobler, R., Berger, J., and Bussiba, A. “Long Crack Fatigue Thresholds and Short Crack Simulation at Liquid Helium Temperatures”, Advances in Cryogenic Engineering (Materials), Vol. 38, 1992, pp. 159–166.

    Google Scholar 

  14. Read, D., and Reed, R., “Fracture and Strength Properties of Selected Austenitic Stainless Steels at Cryogenic Temperatures”, Materials Studies for Magnetic Fusion Energy Applications at Low Temperatures—II, NBSIR 79-1609, National Bureau of Standards, Boulder, Colorado, 1979, pp. 79–122.

    Google Scholar 

  15. Nyilas, A., Krauth, H., Metzner, M., and Munz, D., Proc. Fatigue 84, Second International Conference on Fatigue and Fatigue Thresholds (Birmingham, Alabama), Institut für Technische Physik, Kernforschungszentrum Karlsruhe, Germany, 1984, p. 1637.

    Google Scholar 

  16. Tobler, R., “Near-Threshold Fatigue Crack Growth Behavior of AISI 316 Stainless Steel”, Advances in Cryogenic Engineering (Materials), Vol. 32, 1986, pp. 321–328.

    Google Scholar 

  17. Tobler, R., and Reed, R., “Fatigue Crack Growth Rates of Structural Alloys at Four Kelvin”, NBS-ARPA Materials Research for Superconducting Machinery III, Semi-Annual Technical Report September 1, 1974-March 1, 1975, National Bureau of Standards, Boulder, Colorado, 1975, pp. 87–104.

    Google Scholar 

  18. Dhers, J., Foct, J., and Vogt, J., “Influences of Nitrogen Content on Fatigue Crack Growth Rate at 77 K and 293 K of a 316L Steel”, Proc. HNS-88 (Lille, France), Institute of Metals, London, 1989, pp. 199–203.

    Google Scholar 

  19. Bussiba, A., Tobler, R., and Berger, J., “Superconductor Conduits, Fatigue Crack Growth Rate, and Near-Threshold Behavior of Three Alloys”, Advances in Cryogenic Engineering (Materials), Vol. 38, 1992, pp. 167–174.

    Google Scholar 

  20. Reed, R., “Nitrogen in Austenitic Stainless Steels”, J. Met. 41, 16–21, 1989.

    Google Scholar 

  21. Reed, R., and Simon, N., “Design of 316LN-Type Alloys”, Advances in Cryogenic Engineering (Materials), Vol. 34, Plenum Press, New York, 1988, pp. 165–173.

    Google Scholar 

  22. Reed, R., “Recent Advances in the Development of Cryogenic Steels”, in Supercollider 3, Nonte, J., ed., Plenum Press, New York, 1991, pp. 91–106.

    Google Scholar 

  23. Reed, R., “Austenitic Stainless Steels with Emphasis on Strength at Low Temperatures”, Alloying, ASM International, Materials Park, OH, 1988, pp. 225–256.

    Google Scholar 

  24. Reed, R., Purtscher, P., and Delgado, L., “Low-Temperature Properties of High-Manganese Steels”, High Manganese Austenitic Steels, Lula, R., ed., ASM International, Materials Park, OH, 1988, pp. 13–21.

    Google Scholar 

  25. Morris, J., and Hwang, S., “Fe-Mn Alloys for Cryogenic Use: A Brief Survey of Current Research”, Advances in Cryogenic Engineering (Materials), Vol. 24, Plenum Press, New York, 1978, pp. 82–90.

    Google Scholar 

  26. Morris, J., “Structural Alloys for High Field Superconducting Magnets”, Advances in Cryogenic Engineering (Materials), Vol. 32, Plenum Press, New York, 1986, pp. 1–22.

    Google Scholar 

  27. Horiuchi, T., Ogawa, R., and Shimada, M., “Cryogenic Fe-Mn Austenitic Steels”, Advances in Cryogenic Engineering (Materials), Vol. 32, Plenum Press, New York, 1986, pp. 33–42.

    Google Scholar 

  28. Reed, R., and Horiuchi, T., eds., Austenitic Steels at Low Temperatures, Cryogenic Materials Series, Plenum Press, New York, 1983.

    Google Scholar 

  29. Simon, N., Wong, F., and Reed, R., “Metallic Material Mechanical and Thermal Property Database, Annex 1, Metallic Material Specifications for ITER Magnets”, ITER EDA, Naka Joint Work Site, JAERI, Naka, Japan, 18 August 1997.

    Google Scholar 

  30. Shimamoto, M., Nakajima, N., Yoshida, K., and Tada, E., “Requirements for Structural Alloys for Superconducting Magnet Cases”, Advances in Cryogenic Engineering (Materials), Vol. 32, Plenum Press, New York, 1986, pp. 23–32.

    Google Scholar 

  31. Tobler, R., and Reed, R., “Interstitial Carbon and Nitrogen Effects on the Tensile and Fracture Parameters of AISI 304 Stainless Steels”, Materials Studies for Magnetic Fusion Energy Applications at Low Temperatures—III, NBSIR 80-1627, National Bureau of Standards, Boulder, Colorado, 1980, pp. 15–48.

    Google Scholar 

  32. Sakamoto, T., Nakagawa, Y., Yamauchi, I., Zaizen, T., Nakajima, H., and Shimamoto, S., “Nitrogen-Containing 25Cr-13Ni Stainless Steel as a Cryogenic Structural Material”, Advances in Cryogenic Engineering (Materials), Vol. 30, Plenum Press, New York, 1984, pp. 137–144.

    Google Scholar 

  33. Takahashi, Y., Yoshida, K., Shimada, M., Tada, E. Miura, R., and Shimamoto, S., “Mechanical Evaluation of Nitrogen Strengthened Stainless Steels at 4 K”, Advances in Cryogenic Engineering (Materials), Vol. 28, Plenum Press, New York, 1982, pp. 73–81.

    Google Scholar 

  34. Reed, R., Simon, N., Purtscher, P., and Tobler, R., “Alloy 316LN for Low-Temperature Structures: A Summary of Tensile and Fracture Data”, Materials Studies for Magnetic Fusion Energy Applications at Low Temperatures—IX, NBSIR 86-3050, National Bureau of Standards, Boulder, Colorado, 1986, pp. 15–26.

    Google Scholar 

  35. Stein, G., Menzel, J. and Dörr, H., “Möglichkeiten zur Herstellung von Schmiedestrücken mit hohen Stickstoffgehalten in der Desu-Anlage”, Moderne Stähle, Ergebnisse der Werkstoff-Forschung, Vol. 1, Schweizerische Akademie der Werkstoffwissenschaften, Zurich, 1987, pp. 181–193.

    Google Scholar 

  36. Uggowitzer, P., and Harzenmoser, M., “Strengthening of Austenitic Stainless Steels by Nitrogen”, Proc. HNS-88 (Lille, France), Institute of Metals, London, 1989, pp. 175–179.

    Google Scholar 

  37. Reed, R., and Golda, M., “Properties of Cold-to-Warm Support Straps”, Cryogenics 38, 39–42, 1998.

    Article  Google Scholar 

  38. Reed, R., and Golda, M., “Cryogenic Composite Supports: A Review of Strap and Strut Properties”, Cryogenics 37, 233–250, 1997.

    Article  Google Scholar 

  39. Kasen, M., MacDonald, G., Beekman, D., and Schramm, R., “Mechanical, Electrical, and Thermal Characterization of G-10CR and G-11CR Glass-Cloth/Epoxy Laminates between Room Temperature and 4 K”, Advances in Cryogenic Engineering (Materials), Vol. 26, Plenum Press, New York, 1980, pp. 235–244.

    Google Scholar 

  40. Benzinger, J., “Manufacturing Capabilities of CR-grade Laminates”, Advances in Cryogenic Engineering (Materials), Vol. 36, Plenum Press, New York, 1980, pp. 252–258.

    Google Scholar 

  41. Reed, R., Fabian, P., and Schutz, J., “Turn Insulation for U.S. CS Model Coil”, U.S. ITER Insulation Program for Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1 March 1998.

    Google Scholar 

  42. Reed, R., and Clark, P., “Vacuum Pressure Impregnation of U.S. CS Model Coil”, US ITER Insulation Program for Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA, 31 March 1999.

    Google Scholar 

  43. Simon, N., Reed, R., and Walsh, R., “Compression and Shear Tests of Vacuum-Impregnated Composites”, Advances in Cryogenic Engineering (Materials), Vol. 38A, Plenum Press, New York, 1992, pp. 363–370.

    Google Scholar 

  44. Fabian, P., Munshi, N., Feucht, S., Bittner, K., Rohrhofer, X., Huner, K., and Weber, H., “Low Temperature Mechanical Properties of Cyanate Ester Insulation Systems after Irradiation”, Advances in Cryogenic Engineering (Materials), Vol. 50A, American Institute of Physics, Mellville, NY, 2004, pp. 289–296.

    Google Scholar 

  45. Codell, D., and Fabian, P., “Development of Pre-preg Ceramic Insulation for Superconducting Magnets”, Advances in Cryogenic Engineering (Materials), Vol. 50A, American Institute of Physics, Mellville, NY, 2004, pp. 259–265.

    Google Scholar 

  46. Puigsegur, A., Rondeaux, F., Prouzet, E., and Samoogabalan, K., “Development of an Innovative Insulation for Nb3Sn Wind and React Coils”, Advances in Cryogenic Engineering (Materials), Vol. 50A, American Institute of Physics, Mellville, NY, 2004, pp. 266–272.

    Google Scholar 

  47. Bata, F., Hascicek, Y., Sumption, M., Arda, L., Aslanoglu, Z., Akin, Y., and Collings, E., “ A Sol-Gel Approach to the Insulation of Rutherford Cables”, Advances in Cryogenic Engineering (Materials), Vol. 50A, American Institute of Physics, Mellville, NY, 2004, pp. 273–280.

    Google Scholar 

  48. Zeller, A., “Anodized Insulation for CICC Coils”, Advances in Cryogenic Engineering (Materials), Vol. 48A, American Institute of Physics, Melville, NY, 2002, pp. 255–260.

    Google Scholar 

  49. Reed, R., Fabian, P., and Schutz, J., “U.S. ITER Insulation Irradiation Program”, Final Report to Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, MA, 31 August 1995.

    Google Scholar 

  50. Reed, R., Fabian, P., and Schutz, J., “U.S. ITER Insulation Irradiation Program, Final Report to Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, 31 August 1995.

    Google Scholar 

  51. Bednorz, J., and Muller, K., “Possible High-Tc Superconductivity in the Ba-La-Cu-O System”, Z. Phys. B, 64, 189, 1986.

    Article  Google Scholar 

  52. Hwang, I., Ballinger, R., Morra, M., and Steeves, M., “Mechanical Properties of Incoloy 908—An Update”, Advances in Cryogenic Engineering (Materials), Vol. 38, Plenum Press, New York, 1992, pp. 1–10.

    Google Scholar 

  53. Simon, N., Drexler, E., and Reed, R., Review of Cryogenic Mechanical and Thermal Properties of Al-Li Alloys and Alloy 2219, NISTIR 3971, National Institute of Standards and Technology, Boulder, Colorado, 1991.

    Google Scholar 

  54. Hartwig, G., “Status and Future of Fibre Composites”, Advances in Cryogenic Engineering (Materials), Vol. 40, Plenum Press, New York, 1994, pp. 961–975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Reed, R. (2007). Trends and Advances in Cryogenic Materials. In: Timmerhaus, K.D., Reed, R.P. (eds) Cryogenic Engineering. International Cryogenics Monograph Series. Springer, New York, NY. https://doi.org/10.1007/0-387-46896-X_3

Download citation

Publish with us

Policies and ethics