Skip to main content

Lessons Learned in 50 Years of Cryogenic Thermometry

  • Chapter
Cryogenic Engineering

Part of the book series: International Cryogenics Monograph Series ((ICMS))

  • 3395 Accesses

Abstract

This chapter reviews the basics of cryogenic thermometry in the past 50 years and its updated state of the art. First, it answers the question of why a temperature scale is needed and its meaning. Next, the basics of a scale definition and a short history of the temperature scales from 1955 are outlined, together with lessons learned in temperature calibration and international standards. Finally, the characteristics of the main types of thermometer developed in the past 50 years and used in cryogenics are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pavese, F., and Molinar, G.F., Modern Gas-Based Temperature and Pressure Measurements, The International Cryogenic Monograph Series, Plenum Press, New York, 1992.

    Google Scholar 

  2. BIPM, Supplementary Information for the ITS-90 (Sévres, Bureau International des Poids et Mesures), 1990.

    Google Scholar 

  3. Pavese, F., Metrologia, 42, 194–200, 2005.

    Article  ADS  Google Scholar 

  4. Pagvese, F., Fellmuth, B., Head, D., Hermier, Y., Hill, K.D., and Valkiers, S., Analytical Chemistry, 77(15), 5076–5080, 2005.

    Article  Google Scholar 

  5. BIPM, Comptes Rendus Comité Consulatif de Thermométrie, 23, (Sévres, Bureau International des Poids et Mesures), 2005.

    Google Scholar 

  6. White, D.R., Dransfield, T., Strouse, G.F., Tew, W.L., Rusby, R.L., and Gray, J., Temperature, its Measurement and Control in Science and Industry, Vol. 8, Ripple, D.C., ed., American Institute of Physics, New York, 2003, pp. 221–229.

    Google Scholar 

  7. Fellmuth, B., Wolber, L., Hermier, Y., Pavese, F., Steur, P.P.M., Peroni, I., Szmyrka-Grzebyk, A., Lipinski, L., Tew, W.L., Nakano, T., Sakurai, H., Tamura, O., Head, D., Hill, K.D., and Steele, A.G., Metrologia, 42, 171–193, 2005.

    Article  ADS  Google Scholar 

  8. deLaeter, J.R., Vohlker, J.K., De Bievre, P., Hidoka, H., Peiser, H.S., Rosman, K.J.R., and Taylor, P.D.P., “IUPAC Technical Report”, Pure Appl. Chem., 75, 683–800, 2003.

    Article  Google Scholar 

  9. Pavese, F., Temperature, its Measurement and Control in Science and Industry, Vol. 8, Ripple, D.C., ed., American Institute of Physics, New York, 2003, pp. 167–172.

    Google Scholar 

  10. Pavese, F., Ferri, D., Peroni, I., Pugliese, A., Steur, P.P.M., Fellmuth, B., Head, D., Lipinski, L., Peruzzi, A., Szmyrka-Grzebyk, A., and Wolber, L., Temperature, its Measurement and Control in Science and Industry, Industry, Vol. 8, Ripple, D.C., ed., American Institute of Physics, New York, 2003, pp. 173–178.

    Google Scholar 

  11. Pavese, F., Ancsin, J., Astrov, D.M., Bonhoure, J., Bonnier, G., Furukawa, G.T., Kemp, R.C., Maas, H., Rusby, R.L., Sakurai, H., and Ling Shankang, Metrologia, 20, 127–144, 1984.

    Article  ADS  Google Scholar 

  12. Pavese, F., Ferri, D., Giraudi, D., and Steur, P.P.M., Temperature, its Measurement and Control in Science and Industry, Vol. 6, Schooley, J.F., ed., American Institute of Physics, New York, 1992, pp. 251–256.

    Google Scholar 

  13. Pavese, F., and Ferri, D., Advances in Cryogenic Engineering, Vol. 35, Plenum Press, New York, 1990, pp. 1835–1837.

    Google Scholar 

  14. Pavese, F., Fellmuth, B., Head, D., Hermier, Y., Peruzzi, A., Szmyrka-Grzebyk, A., and Zanin, L., Temperature, its Measurement and Control in Science and Industry, Ripple, D.C., ed., American Institute of Physics, New York, 2003, pp. 161–166.

    Google Scholar 

  15. Lipinski, L., Szmyrka-Grzebyk, A., and Manuszkiewicz, H., Meas. Sci. Technol., 11, 738–742, 2000.

    Article  ADS  Google Scholar 

  16. Schooley, J.F., Evans, Jr., G.A., and Soulen, Jr., R.J., Cryogenics, 20, 193–199, 1980.

    Article  Google Scholar 

  17. Schooley, J.F., and Soulen, Jr., R.J., Temperature, its Measurement and Control in Science and Industry, Vol. 5, Schooley, J.F., ed., American Institute of Physics, New York, 1982, pp. 251–260.

    Google Scholar 

  18. Fellmuth, B., Maas, H., and Elefant, D., Metrologia, 21, 169–180, 1985.

    Article  ADS  Google Scholar 

  19. Pavese, F., “Magnetic Shielding”, Chapter G10, COMETT Encyclopedia of Applied Superconductivity, IOP, London, 1998, pp. 1462–1483.

    Google Scholar 

  20. Lipinsky, L., Manusczkiewicz, H., and Szmyrka-Grzebyk, A., Proc. IV Symp. on Temperature and Thermal Measurements in Industry and Science, TEMPMEKO 90, 1990, pp. 126–130.

    Google Scholar 

  21. Van Sciver, S.W., Helium Cryogenics, Plenum Press, New York, 1986.

    Google Scholar 

  22. Lin Peng, Mao Yuzhu, Hong Chaosheng, Yue Yi and Zhang Qinggeng, “Proc. ICEC 13”, Cryogenics, Special Issue, 1990.

    Google Scholar 

  23. Song Naihao, Hong, C.S., Mao Yuzhu, Ling Peng, Zhang Qinggeng, and Zhang Liang, “Proc. ICEC 13”, Cryogenics, 31, 87–93, 1991.

    Article  Google Scholar 

  24. Maidanov, V.A., Engert, J., and Fellmuth, B., BIPM Comptes Rendus Comité Consultif de Thermométrie 21 (Sévres, Bureau des Poids et Mesures), 2001, Document CCT/-01-01.

    Google Scholar 

  25. Ling Peng, Mao Yuzhu, Hong Chaosheng, Pavese, F., Peroni, I., Head, D., and Rusby, R.L., Temperature, its Measurement and Control in Science and Industry, Vol. 8, Ripple, D.C, ed., American Institute of Physics, New York, 2003, pp. 191–195.

    Google Scholar 

  26. Lipinsky, L., Szmyrka-Grzebyk, A., Manuszkiewicz, H., Steur, P.P.M., and Pavese, F., Proc. TEMPMEKO 97, 1997, pp. 105–109.

    Google Scholar 

  27. Keller, W.E., Helium-3 and Helium-4, Plenum Press, New York, 1969.

    Google Scholar 

  28. BIPM, Comptes Rendus Comité Consultatif de Thermométrie 21 (Sévres, Bureau International des Poids et Mesures), 2001, Document CCT/01-40.

    Google Scholar 

  29. Greywall, D.S., Phys. Rev. B, 33, 7520–7538, 1986.

    Article  ADS  Google Scholar 

  30. Durieux, M., and Rusby, R.L., Metrologia, 19, 67–72, 1983.

    Article  ADS  Google Scholar 

  31. Astrov, D.N., Orlova, M.P., and Kytin, G.A., Metrologia, 5, 111–118, 1969.

    Article  ADS  Google Scholar 

  32. Astrov, D.N., Belyanski, L.B., Dedikov Yu, A., Polunin, S.P., and Zakharov, A.A., Metrologia, 26, 151–166, 1989.

    Article  ADS  Google Scholar 

  33. Steur, P.P.M., Pavese, F., and Peroni, I., Temperature, its Measurememt and Control in Science and Industry, Vol. 8, Ripple, D.C., ed., American Institute of Physics, New York, 2003, pp. 125–130.

    Google Scholar 

  34. Meyer, C.W., and Reilly, M.L., Proc. TEMPMEKO 1996, Marcarino, P., ed., Levrotto & Bella, Torino, Italy, 1997, pp. 39–44.

    Google Scholar 

  35. Sakurai, H., TEMPMEKO, Fellmuth, B., et al., eds, VDE Verlag, Berlin, Germany, 2002, pp. 537–542.

    Google Scholar 

  36. Hill, K.D., TEMPMEKO, Fellmuth, B., et al., eds, VDE Verlag, Berlin, Germany, 2002, pp. 543–548.

    Google Scholar 

  37. Pavese, F., Steur, P.P.M., Ferri, D., and Astrov, D.M., Advances in Cryogenic Engineering, Vol. 43, Plenum Press, New York, 1998, pp. 789–794.

    Google Scholar 

  38. Steur, P.P.M., Peroni, I., Ferri, D., and Pavese, F., Proc. TEMPMEKO, 2004, pp. 141–146.

    Google Scholar 

  39. Ancsin, J., Metrologia, 14, 1–7, 1978.

    Article  ADS  Google Scholar 

  40. Pavese, F., Tew, W.L., and Steele, A.G., Proc. TEMPMEKO, Fellmuth, B., et al., eds, VDE Verlag, Berlin, Germany, 2002, pp. 429–434.

    Google Scholar 

  41. Bedford, R.E., Bonnier, G., Maas, H., and Pavese, F., Techniques for Approximating the International Temperature Scale (Sévres, Bureau International des Poids et Mesures), 1990, Monograph No. 1.

    Google Scholar 

  42. Pavese, F., J. Chem. Thermodynamics, 25, 1351–1361, 1993.

    Article  Google Scholar 

  43. Bedford, R.E., Bonnier, G., Maas, H., and Pavese, F., Metrologia, 33, 133–154, 1996.

    Article  ADS  Google Scholar 

  44. Halperin, W.P., Rasmussen, F.B., Archie, C.N., and Richardson, R.C., J. Low Temp Phys., 31, 617–620, 1978.

    Article  ADS  Google Scholar 

  45. Greywall, D.S., Phys. Rev. B, 33, 7520–7527, 1986.

    Article  ADS  Google Scholar 

  46. Fukuyama, H., Ishimoto, H., Tazaki, T., and Ogawa, S., Phys. Rev. B, 36, 8921–8925, 1987.

    Article  ADS  Google Scholar 

  47. Fogle, W.E., Soulen, R.J., and Colwell, J.H., Temperature, its Measurement and Control in Science and Industry, Vol. 6, Schooley, J.F., ed., American Institute of Physics, New York, 1992, pp. 91–99.

    Google Scholar 

  48. Ni, W., Xia, J.S., Adams, E.D., Haskins, P.S., and McKisson, J.E., J. Low Temp. Phys., 99, 167–173, 1995. Ibid., 101, 305–310, 1995.

    Article  ADS  Google Scholar 

  49. Schuster, G., Homann, A., Hechtscher, D., and Kühne, M., 7th International Symposium in Temperature and Thermal Measurements in Industry and Science, Dubbeldam, J., and de Groot, M., eds, 1999, pp. 129–138.

    Google Scholar 

  50. Reesink, A.L., and Durieux, M., 7th International Symposium on Temperature and Thermal Measurements in Industry and Science, Dubbeldam, J., and deGroot, M., eds, 1999, pp. 50–55.

    Google Scholar 

  51. Reesink, A.L., PhD thesis, Leiden University, 2001.

    Google Scholar 

  52. Rubin, L.G., and Brandt., B.L., Advances in Cryogenic Engineering, Vol. 31, Plenum Press, New York, 1986, pp. 1221–1230.

    Google Scholar 

  53. Pavese, F., Fields of Application: Cryogenics, Thermal Sensors, Vol. 4., Sensors, Ricolfi, T., and Scholz, H., eds., VCH, Weinheim, 1990, Ch. 10.

    Google Scholar 

  54. Ichim, D., Pavese, F., Balle, C., and Casas-Cubillos, J., Advanced Mathematical and Computational Tools in Metrology V, Vol. 57, World Scientific, Singapore, 2001, pp. 208–212.

    Google Scholar 

  55. Mitin, V.F., Boltovet, N.S., Basanets, V.V., Kholevchuk, V.V., Nemish, I.Yu., Mitin, E.V., McDonald, P.C., and Pavese, F., Advances in Cryogenic Engineering, Vol. 51B, American Institute of Physics, New York, 2006, pp. 1234–1250.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Pavese, F. (2007). Lessons Learned in 50 Years of Cryogenic Thermometry. In: Timmerhaus, K.D., Reed, R.P. (eds) Cryogenic Engineering. International Cryogenics Monograph Series. Springer, New York, NY. https://doi.org/10.1007/0-387-46896-X_10

Download citation

Publish with us

Policies and ethics