Skip to main content

Part of the book series: Frontiers in Electronic Testing ((FRET,volume 34))

  • 1203 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.A. Allan and J.A. Walton, “Hierarchical critical area extraction with the EYE tools, ” Proc. 1995 IEEE Int. Workshop Defect and Fault Tolerance in VLSI Systems, pp. 28-36, Nov. 1995.

    Google Scholar 

  2. P. Banerjee, and J. A. Abraham, “Characterization and Testing of Physical Failures in MOS Logic Circuits,” IEEE Design and Test of Computers, vol. 1, pp. 76-86, August 1984.

    Google Scholar 

  3. D. Burnett et al., “Implications of fundamental threshold voltage variations for high-density SRAM and logic circuits,” Symp. on VLSI Tech., pp. 15-16, 1994.

    Google Scholar 

  4. D. Burnet and A-W Sun, “Statistical Threshold Voltage Variations and its impact on supply-voltage scaling,” SPIE, vol. 2636, pp. 83-90.

    Google Scholar 

  5. I. Chen and A.J. Strojwas, “RYE: A realistic yield simulator for structural faults,” Proc. International Test Conference 1987, Washington, DC, USA, 1-3 Sept. 1987, pp.31-42.

    Google Scholar 

  6. Z. Chen, L. Wei, M. Johnson, K. Roy, “Estimation of Standby Leakage Power in CMOS Circuits Considering Accurate Modeling of Transistor Stacks.”

    Google Scholar 

  7. R. Dekker, F. Beenker, and L. Thijssen, “Fault modeling and Test Algorithm Development for Static Random Access Memories,” Proceedings of the IEEE International Test Conference, pp. 343-352, 1988.

    Google Scholar 

  8. M. Eisele et al., “Intra-die device parameter variations and their impact on digital CMOS gates at low voltages”, IEDM Tech. Dig., pp. 67-70, 1995.

    Google Scholar 

  9. M. Niewczas, “Characterization of the Threshold Voltage Variation: A Test Chip and the Results,” IEEE Int. Conference on Microelectronics Test Structures, vol. 10, pp. 169-172, 1997.

    Google Scholar 

  10. F. J. Ferguson, and J. P. Shen, “Extraction and Simulation of Realistic CMOS Faults using Inductive Fault Analysis,” Proceedings of the IEEE International Test Conference, pp. 475-484, 1988.

    Google Scholar 

  11. A. Ferre, “On Estimating Leakage Power Consumption for Digital CMOS Circuits,” Ph.D. Dissertation, Universitat Politecnica de Catalunya, Spain, Nov. 1999.

    Google Scholar 

  12. A.V. Ferris Prabhu, “Modeling the critical areas in yield forecasts,” IEEE J. Solid State Circuits, vol. SC-20, no. 4, pp. 874-878, 1985.

    Article  Google Scholar 

  13. A. V. Ferris-Prabhu, “Role of defect size distribution in yield modeling,” IEEE-Transactions on Electron Devices, vol. ED-32, no.9, p.1727-36, Sept. 1985.

    Google Scholar 

  14. J. Figueras, “Possibilities and Limitations of I$DDQ$ Testing in Submicron CMOS,” Proc. IEEE Conference on Innovative Systems in Silicon, pp. 174-185, 1997.

    Google Scholar 

  15. D. Gaitonde, and D. H. H. Walker, “Test Quality and Yield Analysis Using the DEFAM Defect to Fault Mapper,” Proceedings of the International Conference on Computer Aided Design, pp. 202-205, 1993.

    Google Scholar 

  16. J. Galiay, Y. Crouzet, and M. Vergniault, “Physical Versus Logical Fault Models in MOS LSI Circuits: Impact on Their Testability,” IEEE Transaction on Computers, vol. C-29, no. 6, pp. 527-531, June 1980.

    Google Scholar 

  17. S. K. Gandhi, “VLSI Fabrication Principles”, John Wiley and Sons, 1983.

    Google Scholar 

  18. R.X. Gu and M.I. Elmasry, “Power Dissipation and Optimization of Deep Submicron CMOS Digital Circuis,” IEEE Journal of Solid State Circuits, vol. 31, no. 5, pp. 707-713, May 1996.

    Article  Google Scholar 

  19. T. Kuroda, T. Fujita, T. Nagamatu, S. Yoshioka, T. Sei and K. Matsuo, “A High Speed Low Power 0.3mu m CMOS gate array with Variable Threshold Voltage (Vt) Scheme,” Proc. Custom Integrated Circuits Conference, pp. 53-56, 1996.

    Google Scholar 

  20. M.C. Johnson, D. Somasekhar and K. Roy, “Models and Algorithms for Bounds on Leakage in CMOS Circuits,” IEEE Trans. On Computer Aided Design of Integrated Circuits and Systems, vol. 18, no. 6, pp. 714-725.

    Google Scholar 

  21. W. Maly, A. J. Strojwas, and S. W. Director, “VLSI Yield Prediction and Estimation: A Unified Framework,” IEEE Transactions on Computer Aided Design, vol. CAD- 5, no. 1, pp. 114-130, January 1986.

    Article  Google Scholar 

  22. W. Maly, “Modeling of lithography related losses for CAD of VLSI circuits” IEEE Trans. On Computer Aided Design, vol. CAD-4, no. 3, pp. 166-177, 1985.

    Article  Google Scholar 

  23. W. Maly and J. Deszczka, “Yield estimation model for VLSI artwork evaluation, ” Electron. Lett., vol 19, no. 6, pp. 226-227, 1983.

    Article  Google Scholar 

  24. W. Maly, F. J. Ferguson, and J. P. Shen, “Systematic Characterization of Physical Defects for Fault Analysis of MOS IC Cells,” Proceedings of the International Test Conference, 390-399, 1984.

    Google Scholar 

  25. P.C. Maxwell and J.R. Rearick, “Estimation of Defect-Free IDDQ in Submicron Circuits using Switch Level Simulation, ”Int. Test Conference, pp. 80-84, 1997.

    Google Scholar 

  26. C. Michael and M. Ismail, “Statistical Modeling of Device Mismatch for Analog Integrated MOS Circuits,” IEEE Journal of Solid State Circuits, vol. 27, no. 2, pp. 154-166, Feb. 1992.

    Article  Google Scholar 

  27. M. J. M. Pelgrom et. al., “Matching Properties of MOS transistors”, IEEE Journal of Solid-State Circuits, vol. 24, pp. 1433-1440, 1989.

    Article  Google Scholar 

  28. M. Pelgrom, H. Tuinhout, M. Vertregt, “Transistor matching in analog CMOS applications”, IEDM Tech. Dig., 1998.

    Google Scholar 

  29. J. Pineda and E. van de Wetering, “Average Leakage Current Estimation of Logic CMOS Circuits,” IEEE VLSI Test Symposium, pp. 375-379, Apr. 2001.

    Google Scholar 

  30. J. Pineda de Gyvez, “IC defect sensitivity for footprint type spot defects,” IEEE Trans. On Computer Aided Design, vol. 11, pp. 638-658, May 1992.

    Article  Google Scholar 

  31. R. Rodriguez, P. Volf and J. Pineda de Gyvez, “Resistance Characterization of Weak Opens,” IEEE Design & Test Magazine, pp. 18-26, Sept. 2002.

    Google Scholar 

  32. R. Rodriguez-Montanes and J. Pineda de Gyvez and R. Rodriguez-Montanes, “Threshold Voltage Mismatch ($Δ VT) Fault Modeling,” IEEE. VLSI Test Symposium,pp. 145-150, Napa-Valley CA, April 2003.

    Google Scholar 

  33. D. R. Schertz, and G. Metze, “A New Representation for Faults in Combinational Digital Circuits,” IEEE Transactions on Computers, vol. c-21, no. 8, pp. 858-866, August 1972.

    Article  Google Scholar 

  34. J. P. Shen, W. Maly, and F. J. Ferguson, “Inductive Fault Analysis of MOS Integrated Circuits,” IEEE Design and Test of Computers, vol. 2, pp. 13-26, December 1985.

    Google Scholar 

  35. D. Schmitt-Landsiedel, “Yield Analysis of CMOS ICs,” Proc. Of Gettering and Defect Engineering in Semiconductor Technology,” vol. 57, pp. 327-336, 1997.

    Google Scholar 

  36. Z. Stamenkovic and N. Stojadinovic, “New defect size distribution function for estimation of chip critical area in integrated circuit yield models,” Electron. Lett., vol. 28, no. 6, pp. 528-530, Mar. 1992.

    Article  Google Scholar 

  37. C.H. Stapper, “Modeling of integrated circuit sensitivities,” IBM J. Res. Dev., vol. 27, no. 6, pp. 549-557, 1983.

    Article  Google Scholar 

  38. C.H. Stapper, “The effects of wafer to wafer defect density variations on integrated circuit defect and fault distirbutions, ” IBM J. Res. Dev., vol. 29, no. 1, pp. 87-97, 1985.

    Google Scholar 

  39. C.H. Stapper, “Yield Model for fault clusters within integrated circuits,” IBM J. Res. Dev. Vol. 28, no. 5, pp. 636-640, 1984.

    Google Scholar 

  40. C.H. Stapper, “On Yield, fault distributions and clustering of particles,” IBM J. Res. Dev., vol. 30, no. 3, pp. 326-338, 1986.

    Google Scholar 

  41. C.H. Stapper, “Modeling of defects in integrated circuit photolithographic patterns,” IBM-Journal of Research and Development, vol.28, no.4, p.461-74, July 1984.

    Google Scholar 

  42. S. M. Sze, “VLSI Technology,” New York: McGraw Hill Book Company, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Sachdev, M., Gyvez, J.P.d. (2007). Functional and Parametric Defect Models. In: Sachdev, M., Gyvez, J.P.d. (eds) Defect-Oriented Testing for Nano-Metric CMOS VLSI Circuits. Frontiers in Electronic Testing, vol 34. Springer, Boston, MA. https://doi.org/10.1007/0-387-46547-2_2

Download citation

  • DOI: https://doi.org/10.1007/0-387-46547-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-46546-3

  • Online ISBN: 978-0-387-46547-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics