Skip to main content

Part of the book series: Frontiers in Electronic Testing ((FRET,volume 34))

  • 1033 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abadir, and A.P. Ambler, Economics of Electronic Design, Manufacture and Test, Boston: Kluwer Academic Publishers, 1994.

    Google Scholar 

  2. V.D. Agrawal, S.C. Seth, and P. Agrawal, “Fault Coverage Requirement in Production Testing of LSI Circuits”, IEEE Journal of Solid State Circuits, vol. SC-17, no.1, pp. 57–61, February 1982.

    Article  Google Scholar 

  3. A.P. Ambler, M. Abadir, and S. Sastry, Economics of Design and Test for Electronic Circuits and Systems, New York: Ellis Horwood, 1992.

    Google Scholar 

  4. K. Baker, “QTAG: A Standard for Test Fixture Based IDDQ/ISSQ Monitors,” Proceedings of the IEEE International Test Conference, pp. 194–202, 1992.

    Google Scholar 

  5. G. Baccarani, M.R. Wordeman, and R.H. Dennard, “Generalized Scaling Theory and its Application to a \raise.5ex\scriptstyle 1\kern-.1em/ \kern-.15em\lower.25ex\hboxriptstyle 4 micrometer MOSFET design,” IEEE Transactions on Electron Devices, vol. ED-31, pp. 452–462, Apr. 1984.

    Google Scholar 

  6. J. Bardeen, and W. Brattain, “The Transistor, a Semiconductor Triode,” Phys. Rev., vol. 74, pp. 230, Jul. 1948.

    Article  Google Scholar 

  7. S.D. Brown, Field-Programmable Devices: Technology, Applications, Tools, 2nd Edition, Los Gatos: Stan Baker Associates, 1995.

    Google Scholar 

  8. C. Dislis, J.H. Dick, I.D. Dear, and A.P. Ambler, Test Economics and Design For Testability, New York: Ellis Horward, 1995.

    Google Scholar 

  9. D.L. Crook, “Evolution of VLSI Reliability Engineering,” Proceedings of the IEEE International Reliability Physics Symposium, pp. 2–11, 1990.

    Google Scholar 

  10. R. H. Dennard, F.H. Gaensslen, H.N. Yu, V.L. Rideout, E. Bassous, and A.R. Leblanc, “Design of ion-implanted MOSFETs with very small physical dimensions,” IEEE Journal of Solid State Circuits, vol. SC-9, pp. 256–268, Oct. 1974.

    Google Scholar 

  11. F.J. Ferguson, and J.P. Shen, “Extraction and Simulation of Realistic CMOS Faults using Inductive Fault Analysis,” Proceedings of the IEEE International Test Conference, pp. 475–484, 1988.

    Google Scholar 

  12. A.V. Ferris-Prabhu, “Computation of the critical area in semiconductor yield theory,” Proceedings of the European Conference on Electronic Design Automation, pp.171–173, 1984.

    Google Scholar 

  13. D.J. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur, and H.P. Wong, “Device Scaling Limits of Si MOSFET and Their Application Dependencies,” Proceedings of the IEEE, vol. 89, no. 3, Mar. 2001.

    Google Scholar 

  14. C. Hawkins, and J. Soden, “Reliability and Electrical Properties of Gate Oxide Shorts in CMOS ICs,” Proceedings of the IEEE International Test Conference, pp. 443–451, 1986.

    Google Scholar 

  15. E.R. Hnatek, “IC Quality - Where Are We?” Proceedings of the IEEE International Test Conference, pp. 430–445, 1987.

    Google Scholar 

  16. E.R. Hnatek, Integrated Circuits Quality and Reliability – 2nd Edition, New York: Marcel Dekker, Inc., 1995.

    Google Scholar 

  17. R. Gayle, “The Cost of Quality: Reducing ASIC Defects with IDDQ, At-Speed Testing and Increased Fault Coverage,” Proceedings of the IEEE International Test Conference, pp. 285–292, 1993.

    Google Scholar 

  18. J. Geerlings, E. Desmicht, and H. de Perthuis, “A single-chip MPEG2 CODEC for DVD+RW”, IEEE International Solid-State Circuits Conference, vol. 1, pp. 40–41, 2003.

    Google Scholar 

  19. R. Gulati, and C. Hawkins, IDDQ Testing of VLSI Circuits, Boston: Kluwer Academic Publishers, 1993.

    MATH  Google Scholar 

  20. O. Heil, “Improvements in or relating to electrical amplifiers and other control arrangements and devices”, British Patent no. 439,457, 1935.

    Google Scholar 

  21. C. Hora, R. Segers, S. Eichenberger, M. Lousberg, “An effective Diagnosis Method to Support Yield Improvement,” Int. Test Conference, pp. 260–269, Oct. 2002

    Google Scholar 

  22. International Technology Roadmap for Semiconductors [Online], Available: http://public.itrs.net.

    Google Scholar 

  23. M. Inoue, T. Yamada, and A. Fujiwara, “A New Testing Acceleration Chip for Low-Cost Memory Test,” IEEE Design and Test of Computers, vol. 10, pp. 15–19, Mar. 1993.

    Article  Google Scholar 

  24. J. Khare, and W. Maly, From Contamination to Defects, Faults and Yield Loss, Boston: Kluwer Academic Publishers, 1996.

    Google Scholar 

  25. J. Kilby, “Semiconductor Device-and-Lead Structure,” U.S. Patent no. 2,981,877, 1959.

    Google Scholar 

  26. J. P. M. van Lammeren, “ICCQ: A Test Method for Analogue VLSI Based on Current Monitoring,” IEEE International Workshop on IDDQ Testing, pp. 24–28, 1997.

    Google Scholar 

  27. J. E. Lilenfeld, “Method and apparatus for controlling electric currents”, U.S. Patent no. 1,745,175, 1926.

    Google Scholar 

  28. P. Maxwell, P. O’Neill, R. Aitken, R. Dudley, N. Jaarsma, M. Quach, D. Wiseman, “Current ratios: a self-scaling technique for production IDDQ testing,” Proceedings of the IEEE International Test Conference, pp. 1148–1156, 2000.

    Google Scholar 

  29. P. Mazumder, and K. Chakraborty, Testing and Testable Design of High-Density Random-Access Memories, Boston: Kluwer Academic Publishers, 1996.

    Google Scholar 

  30. S. D. McEuen, “IDDQ Benefits,” Proceedings of the IEEE VLSI Test Symposium, pp. 285–290, 1991.

    Google Scholar 

  31. E.J. McCluskey, and F. Buelow, “IC Quality and Test Transparency,” Proceedings of the IEEE International Test Conference, pp. 295–301, 1988.

    Google Scholar 

  32. A. C. Miller, “IDDQ Testing in Deep Submicron Integrated Circuits,” Proceedings of the IEEE International Test Conference, pp. 724–729, 1999.

    Google Scholar 

  33. G. Moore, “Cramming More Components into Integrated Circuits,” Electronics, vol. 38, no. 8, Apr. 1965.

    Google Scholar 

  34. B. Mustafa Pulat, and L. M. Streb, “Position of Component Testing in Total Quality Management (TQM),” Proceedings of the IEEE International Test Conference, pp. 362–366, 1992.

    Google Scholar 

  35. R. Perry, “IDDQ testing in CMOS digital ASICs,” Journal of Electronic Testing: Theory and Applications, vol. 3, pp. 317–325, Nov. 1992.

    Article  Google Scholar 

  36. J. Rajski, “DFT technology for low cost IC manufacture test”, Electronic Engineering Design, pp. 21, Jun. 2002.

    Google Scholar 

  37. M. Rencher, “Yields can be improved via design techniques”, EE Times special publication: “What’s Yield Got To Do With IC Design?,” 2003.

    Google Scholar 

  38. J. Roberts, and S. Burke, “Intel to take 475M charge to cover costs in Pentium recall”, Computer Reseller News, iss. 614, pp. 135, Jan. 1995.

    Google Scholar 

  39. M. Sachdev, “A Defect Oriented Testability Methodology for Analog Circuits,” Journal of Electronic Testing: Theory and Applications, vol. 6, no. 3, pp. 265–276, Jun. 1995.

    Article  Google Scholar 

  40. M. Sachdev, “Reducing the CMOS RAM Test Complexity with IDDQ and Voltage Testing,” Journal of Electronic Testing: Theory and Applications, vol. 6, no. 2, pp. 191–202, Apr. 1995.

    Article  Google Scholar 

  41. M. Sachdev, “Deep Sub-micron IDDQ Testing: Issues and Solutions,” Proceedings of the European Design and Test Conference, pp. 271–278, 1997.

    Google Scholar 

  42. M. Sachdev, P. Janssen, and V. Zieren, “Defect detection with transient current testing and its potential for deep sub-micron CMOS ICs,” Proceedings of the IEEE International Test Conference, pp. 204–213, 1998.

    Google Scholar 

  43. M. Sachdev, “Current-Based Testing for Deep-Submicron VLSI”, IEEE Design and Test of Computers, pp. 77–84, Mar. 2001.

    Google Scholar 

  44. A. Schafft, D. A. Baglee, and P. E. Kennedy, “Building-in Reliability: Making it Work,” Proceedings of the IEEE International Reliability Physics Symposium, pp. 1–7, 1991.

    Google Scholar 

  45. W. Schockley, “The Theory of pn-junction in Semiconductors and pn-junction Transistors,” BSTJ, vol. 28, p. 435, 1949.

    Google Scholar 

  46. O. Semenov, A. Vassighi, M. Sachdev, A. Keshavarzi, and C. F. Hawkins, “Effect of CMOS technology scaling on thermal management during burn-in”, IEEE Transactions on Semiconductor Manufacturing, vol. 16, iss. 4, pp. 686–695, Nov. 2003.

    Google Scholar 

  47. S.C. Seth, and V.D. Agrawal, “Characterizing the LSI Yield Equation from Wafer Test Data,” IEEE Transactions on Computer-Aided Design, vol. CAD-3, no. 2, pp. 123–126, Apr. 1984.

    Article  Google Scholar 

  48. J.M. Soden, C.F. Hawkins, R.K. Gulati, and W. Mao, “IDDQ Testing: A Review,” Journal of Electronic Testing: Theory and Applications, vol. 3, pp. 291–303, Nov. 1992.

    Article  Google Scholar 

  49. M. Syrzycki, “Modeling of Spot Defects in MOS Transistors,” Proceedings of the IEEE International Test Conference, pp. 148–157, 1987.

    Google Scholar 

  50. E. Takeda et al., “VLSI Reliability Challenges: From Device Physics to Wafer Scale Systems,” Proceedings of the IEEE, vol. 81, no.5, pp. 653–674, May 1993.

    Article  Google Scholar 

  51. “Test and Test Equipment”, 2003 International Technology Roadmap for Semiconductors [Online], Available: http://public.itrs.net/Files/2003ITRS/ Test2003.pdf.

    Google Scholar 

  52. F. Wanlass, “Low Stand-By Power Complementary Field Effect Circuit,” U.S. Patent no. 3,356,858, 1963.

    Google Scholar 

  53. F. Wanlass, and C. Sah, “Nanowatt Logic Using Field-Effect Metal-Oxide Semiconductor Triodes,” ISSCC Digest of Technical Papers, pp. 32–33, February 1963.

    Google Scholar 

  54. P. Wiscombe, “A Comparison of Stuck-At Fault Coverage and IDDQ Testing on Defect Levels,” Proceedings of the IEEE International Test Conference, pp. 293–299, 1993.

    Google Scholar 

  55. T. W. Williams, R. H. Dennard, and R. Kapur, “Iddq Analysis: Sensitivity Analysis of Scaling,” Proceedings of the IEEE International Test Conference, pp. 786–792, 1996.

    Google Scholar 

  56. T. W. Williams, R. Kapur, and M. R. Mercer, “Iddq Testing for High Performance CMOS – The Next Ten Years,” Proceedings of the European Design and Test Conference, pp. 578–583, 1996.

    Google Scholar 

  57. P. Varma, A.P. Ambler, and K. Baker, “An Analysis of the Economics of Self- Test,” Proceedings of the IEEE International Test Conference, pp. 20–30, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Sachdev, M., Gyvez, J.P.d. (2007). Introduction. In: Sachdev, M., Gyvez, J.P.d. (eds) Defect-Oriented Testing for Nano-Metric CMOS VLSI Circuits. Frontiers in Electronic Testing, vol 34. Springer, Boston, MA. https://doi.org/10.1007/0-387-46547-2_1

Download citation

  • DOI: https://doi.org/10.1007/0-387-46547-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-46546-3

  • Online ISBN: 978-0-387-46547-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics