Skip to main content

Regulation of Activation Induced Deaminase via Phosphorylation

  • Conference paper
Mechanisms of Lymphocyte Activation and Immune Regulation XI

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 596))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Honjo, T., Kinoshita, K. & Muramatsu, M. Molecular Mechanism of Class Switch Recombination: Linkage with Somatic Hypermutation. Annu Rev Immunol 20, 165–96 (2002).

    Article  PubMed  CAS  Google Scholar 

  2. Petersen-Mahrt, S. K., Harris, R. S. & Neuberger, M. S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–103. (2002).

    Article  PubMed  CAS  Google Scholar 

  3. Neuberger, M. S., Harris, R. S., Di Noia, J. & Petersen-Mahrt, S. K. Immunity through DNA deamination. Trends Biochem Sci 28, 305–12. (2003).

    Article  PubMed  CAS  Google Scholar 

  4. Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem 274, 18470–6 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. Ramiro, A. R., Stavropoulos, P., Jankovic, M. & Nussenzweig, M. C. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat Immunol 4, 452–6. (2003).

    Article  PubMed  CAS  Google Scholar 

  6. Chaudhuri, J. et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422, 726–30. (2003).

    Article  PubMed  CAS  Google Scholar 

  7. Chaudhuri, J., Khuong, C. & Alt, F. W. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 430, 992–8 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. Bransteitter, R., Pham, P., Scharff, M. D. & Goodman, M. F. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci U S A 100, 4102–7. (2003).

    Article  PubMed  CAS  Google Scholar 

  9. Bransteitter, R., Pham, P., Calabrese, P. & Goodman, M. F. Biochemical analysis of hypermutational targeting by wild type and mutant activation-induced cytidine deaminase. J Biol Chem 279, 51612–21 (2004).

    Article  PubMed  CAS  Google Scholar 

  10. Dickerson, S. K., Market, E., Besmer, E. & Papavasiliou, F. N. AID Mediates Hypermutation by Deaminating Single Stranded DNA. J Exp Med 197, 1291–6. (2003).

    Article  PubMed  CAS  Google Scholar 

  11. Nambu, Y. et al. Transcription-coupled events associating with immunoglobulin switch region chromatin. Science 302, 2137–40. (2003).

    Article  PubMed  CAS  Google Scholar 

  12. Neuberger, M. S., Harris, R. S., Di Noia, J. & Petersen-Mahrt, S. K. Immunity through DNA deamination. Trends Biochem Sci 28, 305–12 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. Neuberger, M. S. et al. Somatic hypermutation at A.T pairs: polymerase error versus dUTP incorporation. Nat Rev Immunol 5, 171–8 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. Di Noia, J. & Neuberger, M. S. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 419, 43–8 (2002).

    Article  PubMed  Google Scholar 

  15. Rada, C. et al. Immunoglobulin Isotype Switching Is Inhibited and Somatic Hypermutation Perturbed in UNG-Deficient Mice. Curr Biol 12, 1748–55. (2002).

    Article  PubMed  CAS  Google Scholar 

  16. Rada, C., Di Noia, J. M. & Neuberger, M. S. Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. Mol Cell 16, 163–71 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. Chaudhuri, J. & Alt, F. W. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol 4, 541–52 (2004).

    Article  PubMed  CAS  Google Scholar 

  18. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–63. (2000).

    Article  PubMed  CAS  Google Scholar 

  19. Zarrin, A. A., Tian, M., Wang, J., Borjeson, T. & Alt, F. W. Influence of switch region length on immunoglobulin class switch recombination. Proc Natl Acad Sci U S A 102, 2466–70 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. Stavnezer, J. Immunoglobulin class switching. Curr Opin Immunol 8, 199–205 (1996).

    Article  PubMed  CAS  Google Scholar 

  21. Reaban, M. E. & Griffin, J. A. Induction of RNA-stabilized DNA conformers by transcription of an immunoglobulin switch region. Nature 348,342–4. (1990).

    Article  PubMed  CAS  Google Scholar 

  22. Reaban, M. E., Lebowitz, J. & Griffin, J. A. Transcription induces the formation of a stable RNA.DNA hybrid in the immunoglobulin alpha switch region. J Biol Chem 269, 21850–7. (1994).

    PubMed  CAS  Google Scholar 

  23. Tian, M. & Alt, F. W. Transcription-induced cleavage of immunoglobulin switch regions by nucleotide excision repair nucleases in vitro. J Biol Chem 275, 24163–72 (2000).

    Article  PubMed  CAS  Google Scholar 

  24. Daniels, G. A. & Lieber, M. R. Strand specificity in the transcriptional targeting of recombination at immunoglobulin switch sequences. Proc Natl Acad Sci U S A 92, 5625–9. (1995).

    Article  PubMed  CAS  Google Scholar 

  25. Yu, K., Chedin, F., Hsieh, C. L., Wilson, T. E. & Lieber, M. R. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol 4, 442–51. (2003).

    Article  PubMed  CAS  Google Scholar 

  26. Huang, F. T., Yu, K., Hsieh, C. L. & Lieber, M. R. Downstream boundary of chromosomal R-loops at murine switch regions: implications for the mechanism of class switch recombination. Proc Natl Acad Sci U S A 103, 5030–5 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. Longerich, S., Basu, U., Alt, F. & Storb, U. AID in somatic hypermutation and class switch recombination. Curr Opin Immunol 18, 164–74 (2006).

    Article  PubMed  CAS  Google Scholar 

  28. Zarrin, A. A. et al. An evolutionarily conserved target motif for immunoglobulin class-switch recombination. Nat Immunol 5, 1275–81 (2004).

    Article  PubMed  CAS  Google Scholar 

  29. Nagelhus, T. A. et al. A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34-kDa subunit of replication protein A. J Biol Chem 272, 6561–6. (1997).

    Article  PubMed  CAS  Google Scholar 

  30. Basu, U. et al. The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature 438, 508–11 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. Pasqualucci, L., Kitaura, Y., Gu, H. & Dalla-Favera, R. PKA-mediated phosphorylation regulates the function of activation-induced deaminase (AID) in B cells. Proc Natl Acad Sci U S A 103, 395–400 (2006).

    Article  PubMed  CAS  Google Scholar 

  32. McBride, K. M., Gazumyan, A. ,Woo, E.M. ,Barreto, V.M. ,Robbiani, D.F. ,Chait, B.T. ,Nussenzweig, M.C. Regulation of hypermutation by activation-induced cytidine deaminase phosphorylation. Proc Natl Acad Sci U S A 103, 8798–803 (2006).

    Article  PubMed  CAS  Google Scholar 

  33. Wang, J. et al. Identification of a specific domain required for dimerization of activation-induced cytidine deaminase. J Biol Chem (2006).

    Google Scholar 

  34. Ramiro, A. R. et al. Role of genomic instability and p53 in AID-induced c-myc-Igh translocations. Nature 440, 105–9 (2006).

    Article  PubMed  CAS  Google Scholar 

  35. Schrader, C. E., Linehan, E. K., Mochegova, S. N., Woodland, R. T. & Stavnezer, J. Inducible DNA breaks in Ig S regions are dependent on AID and UNG. J Exp Med 202, 561–8 (2005).

    Article  PubMed  CAS  Google Scholar 

  36. McBride, K. M., Barreto, V., Ramiro, A. R., Stavropoulos, P. & Nussenzweig, M. C. Somatic hypermutation is limited by CRM1-dependent nuclear export of activation-induced deaminase. J Exp Med 199, 1235–44 (2004).

    Article  PubMed  CAS  Google Scholar 

  37. Shinkura, R. et al. Separate domains of AID are required for somatic hypermutation and class-switch recombination. Nat Immunol 5, 707–12 (2004).

    Article  PubMed  CAS  Google Scholar 

  38. Brar, S. S., Watson, M. & Diaz, M. Activation-induced cytosine deaminase (AID) is actively exported out of the nucleus but retained by the induction of DNA breaks. J Biol Chem 279, 26395–401 (2004).

    Article  PubMed  CAS  Google Scholar 

  39. Muto, T. et al. Negative regulation of activation-induced cytidine deaminase in B cells. Proc Natl Acad Sci U S A 103, 2752–7 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

Basu, U., Chaudhuri, J., Phan, R.T., Datta, A., Alt, F.W. (2007). Regulation of Activation Induced Deaminase via Phosphorylation. In: Gupta, S., Alt, F., Cooper, M., Melchers, F., Rajewsky, K. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation XI. Advances in Experimental Medicine and Biology, vol 596. Springer, Boston, MA. https://doi.org/10.1007/0-387-46530-8_11

Download citation

Publish with us

Policies and ethics