Skip to main content

Bipolar Junction Transistors

  • Chapter
Semiconductor Physical Electronics
  • 6352 Accesses

Abstract

The invention of germanium alloy bipolar junction transistors (BJTs) by Bardeen, Brattain, and Shockley in 1948 has revolutionized the electronics industry. The BJT device is considered one of the most important electronic components used in modern integrated circuit (IC) chips for computers, communications and power systems, and in many other digital and analog electronic circuit applications. The subsequent developments of silicon BJTs, metal-oxide-semiconductor field-effect transistors (MOSFETs), and ICs based on BJTs and MOSFET have changed the landscape of the entire electronics industry. As a result, silicon BJTs and FETs have replaced bulky vacuum tubes for various electronic circuits, computers, microwave, and power systems applications. Furthermore, advances in silicon-processing technologies such as the development of optical and electron-beam (E-beam) lithographies, new metallization and etching techniques, as well as ion-implantation enable the fabrication of high-performance silicon BJTs with submicron geometries for very large scale integrated circuit (VLSIC) applications. Recent development of new Si/Si-Ge heterojunction bipolar transistors (HBTs) grown by molecular beam epitaxy (MBE) and metal-organic-chemical vapor deposition (MOCVD) techniques on silicon substrates offer even higher speed performance for nextgeneration supercomputer applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. G. Jespers, “Measurements for Bipolar Devices,” in: Process and Device Modeling for Integrated Circuit Design (F. Van de Wiele, W. L. Engl, and P. G. Jespers, eds.), Noordhoff, Ley den (1977).

    Google Scholar 

  2. H. K. Gummel and H. C. Poon, “An Integral Charge Control Model of Bipolar Transistors,” Bell Syst. Tech. J. 49, 827 (1970).

    Google Scholar 

  3. E. J. McGrath and D. H. Navon, “Factors Limiting Current Gain in Power Transistors,” IEEE Trans. Electron Devices ED-24, 1255 (1977).

    Article  ADS  Google Scholar 

  4. J. J. Ebers and J. L. Moll, “Large Signal Behavior of Junction Transistors,” Proc. IRE 49, 834 (1961).

    Google Scholar 

  5. J. L. Moll, “Large-Signal Transient Response of Junction Transistors,” Proc. IRE 42, 1773 (1954).

    Article  Google Scholar 

  6. A. Cuthbertson and P. Ashburn, “Self-Aligned Transistors with Polysilicon Emitters for Bipolar VLSI,” IEEE Trans. Electron Devices ED-32, 242 (1985).

    Article  Google Scholar 

  7. H. Kromer, Proc. IRE, 45, 1535 (1957).

    Article  Google Scholar 

  8. P. M. Asbeck, IEEE IEDM Short Course: Heterostructure Transistors, New York (1988).

    Google Scholar 

  9. Bibliography

    Google Scholar 

  10. J. Bardeen and W. H. Brattain, “The Transistor, A Semiconductor Triode,” Phys. Rev. 74, 230 (1948).

    Article  ADS  Google Scholar 

  11. A. Bar-Lev, Semiconductors and Electronic Devices, 2nd ed., Prentice-Hall, Englewood Cliffs (1984).

    Google Scholar 

  12. E. I. Carroll, Power Electronics for Very High Power Applications, 7th Int. Conf. Power Electronics and Variation Speed Drives, p. 218 (1998).

    Google Scholar 

  13. C. Y. Chang and Francis Kai, GaAs High Speed Devices, Wiley, New York (1994).

    Google Scholar 

  14. C. Y. Chang and S. M. Sze, ULSI Devices, Wiley, New York (2000).

    Google Scholar 

  15. C. Y. Chang and S. M. Sze, ULSI Devices, Wiley & Sons, Inc., New York, 2000.

    Google Scholar 

  16. M. F. Chang, P. M. Asbeck, K. C. Wang, G. J. Sullivan, N. H. Sheng, J. A. Higgins, and D. L. Miller, IEEE Elec. Dev. Lett., EDL-8, 303 (1987).

    Article  ADS  Google Scholar 

  17. J. Early, “Effects of Space-Charge Layer Widening in Junction Transistors,” Proc. IRE, 40, 1401 (1952).

    Article  Google Scholar 

  18. J. J. Ebers and J. L. Moll, “Large Signal Behavior of Junction Transistors,” Proc. IRE, 49, 834 (1961).

    Google Scholar 

  19. P. E. Gray, D. De Witt, A. R. Boothroyd, and J. F. Gibbons, Physical Electronics and Circuit Models of Transistors, p. 145, SEEC Vol. II, Wiley, New York (1964).

    Google Scholar 

  20. P. E. Gray and C. L. Searle, Electronic Principles: Physics, Models and Circuits, Wiley, New York (1969).

    Google Scholar 

  21. A. S. Grove, Physics and Technology of Semiconductor Devices, Wiley, New York (1967).

    Google Scholar 

  22. C. T. Kirk, “A Theory of Transistor Cutoff Frequency Falloff at High Current Density,” IEEEE Trans. Electron Devices ED-9, 164 (1962).

    Article  ADS  Google Scholar 

  23. S. Konaka, Y Yamamoto, and T. Sakai, “A 30 ps Bipolar IC Using Super Self-Aligned Process Technology,” IEEE Trans. Electron Devices ED-33, 526 (1986).

    Article  Google Scholar 

  24. H. F. Lips, “Technology Trends or HVDC Thyristor Valves,” 1998 In Conf. Power Syst. Tech.Proc., 1, 446 (1998).

    Google Scholar 

  25. B. S. Meyerson, SiGe based mixed-signal technology for optimization of wired and wireless telecommunications, IBM J. RES. DEVELOP, vol. 44 (3), May (2000).

    Google Scholar 

  26. R. S. Muller and T. I. Kamins, Device Electronics and for Integrated Circuits, 2nd edition, Wiley, New York (1986).

    Google Scholar 

  27. D. A. Neamen, Semiconductor Physics and Devices: Basic Principles, 3rd edition, McGraw-Hill, New York (2003).

    Google Scholar 

  28. G. W. Neudeck, Semiconductor Microdevices and Materials, New York: Holt, Rinehart, & Winston, (1986).

    Google Scholar 

  29. J. F. A. Nijs, Advanced Silicon and Semiconducting Silicon Alloy Based Materials and Devices, Institute of Physics Publishing (1994).

    Google Scholar 

  30. T. H. Ning and R. D. Isaac, “Effect of Emitter Contact on Current Gain of Silicon Bipolar Devices,” IEEE Trans. Electron Devices ED-27, 2051 (1980).

    Article  ADS  Google Scholar 

  31. H. K. Park, K. Boyer, C. Clawson, G. Eiden, A. Tang, Y. Yamaguchi, and J. Sachitano, “High-Speed Polysilicon Emitter–Base Bipolar Transistor,” IEEE Electron Devices Lett. ED1-7, 658 (1986).

    Article  Google Scholar 

  32. B. K. Rose, “Evaluation of Modern Power Semiconductor Devices and Future Trends of Converters,” IEEE Trans. Ind. Appl., 28 (2), 403 (1992).

    Article  Google Scholar 

  33. K. Schonenber et al., A 200 mm SiGe HBT BiCMOS Technology for Mixed Signal Applications, Proc. of the 1995 Bipolar/BiCMOS Circuits and Technology Meeting, BCTM'95 p. 89 (1995).

    Google Scholar 

  34. W Shockley, “The Theory of p–n Junctions in Semiconductors and p–n Junction Transistors,” Bell Syst. Tech. J. 28, 435 (1949).

    Google Scholar 

  35. M. Shur, Physics of Semiconductor Devices, Englewood Cliffs, NJ: Prentice Hall (1990).

    Google Scholar 

  36. B. G. Streetman and S. Banerjee, Solid State Electronic Devices, 5th ed. Upper Saddle River: Prentice Hall (2000).

    Google Scholar 

  37. S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, New York (1981).

    Google Scholar 

  38. S. M. Sze, High Speed Semiconductor Devices, Wiley, New York (1990).

    Google Scholar 

  39. S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd. Edition, Wiley, New York (2002).

    Google Scholar 

  40. F. D. Taylor, Thyristor Design and Realization, Wiley Interscience, New York, 1993.

    Google Scholar 

  41. M. Vora, Y. L. Ho, S. Bhanre, F. Chien, G. Bakker, H. Hingarh, and C. Schmilz, A Sub-100 Picosecond Bipolar ECL Technology, IEDM Tech. Digest, p. 34, 1985.

    Google Scholar 

  42. E. S. Yang, Microelectronic Devices, McGraw-Hill, New York (1988).

    Google Scholar 

  43. J. S. Yuan, SiGe, GaAs, and InP Heterojunction Bipolar Transistors, Wiley, New York (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Li, S.S. (2006). Bipolar Junction Transistors. In: Li, S.S. (eds) Semiconductor Physical Electronics. Springer, New York, NY. https://doi.org/10.1007/0-387-37766-2_14

Download citation

Publish with us

Policies and ethics