Skip to main content

Solar Cells and Photodetectors

  • Chapter
Semiconductor Physical Electronics

Abstract

Photonic devices play an important role in a wide variety of applications in the areas of photovoltaic (PV) power generation, optical communications, data transmission and signal processing, detection, sensors and optical imaging, and displays and light sources. Recent advances in III-IV compound semiconductor growth and processing technologies have enabled these applications to become a reality. As a result, various photonic devices such as laser diodes (LDs), light-emitting diodes (LEDs), solar cells, and photodetectors using III-V semiconductors have been developed for use in power generation, optical communications, displays and solidstate light sources, data transmission, and signal processing. Depending on the device structures and operating modes, photonic devices can in general be divided into three categories: (i) PV devices (i.e., solar cells), which convert sunlight directly into electricity by generating electron–hole pairs in a solar cell via internal PV effect, (ii) photodetectors, which detect photons or optical signals and convert them into electrical signals via internal photoelectric effects, and (iii) LEDs and LDs, which convert electrical energy into incoherent (for LEDs) and coherent (for LDs) optical radiation by electrical injection into the junction region of a p-n junction diode. In this chapter, the basic device physics and structures, the operation principles, and the general characterstics of solar cells and photodetectors fabricated from elemental and compound semiconductors will be depicted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. M. P. Thekaekara, Suppl. Proc. 20th Annual Meeting Inst. Environ Sci., (1974). p. 21

    Google Scholar 

  2. J. J. Wysocki and P. Rappaport, J. Appl. Phys. 31, 571 (1961).

    Article  ADS  Google Scholar 

  3. J. Lindmayer and J. F. Allison, Conf. Record, 9th IEEE Photovoltaic Spec. Conf., New York, p. 83 (1972).

    Google Scholar 

  4. S. S. Li, Solid-State Electron. 21, 435 (1978).

    Article  ADS  Google Scholar 

  5. S. P. Tobin, S. M. Vernon, C. Bajgar, V. E. Haven, and L. M. Geoffroy, IEEE Electron. Device. Lett. 9, 256 (1988).

    Article  ADS  Google Scholar 

  6. Zhu H., Kalkan A. K., Hou J., Fonash S. J. AIP Conf. Proceedings, 462, 309–314. (1999).

    Article  ADS  Google Scholar 

  7. J. Song, S. S. Li, C. H. Huang, O. D. Crisalle, and T. J. Anderson, Solid State Electronics, 48, pp. 73–79 (2004).

    Article  ADS  Google Scholar 

  8. T. Takamoto, E. Ikeda, H. Kurita, and M. Ohmori, Appl. Phys. Lett. 70, 381 (1997).

    Article  ADS  Google Scholar 

  9. M. Yamaguchi and K. Araki, Japanese R & D activities of multijunction and concentrator solar cells, in www.dlnet.vt.edu. (2005).

    Google Scholar 

  10. X. Deng, Proc. of 31th IEEE Photovoltaic Specialist Conference, Jan. (2005).

    Google Scholar 

  11. R. A. Sherif, R. R. King, H. L. Cotal, C. Fetzer, K. Edmondson, D. Law, G. Kinsey, H. Yoon, and N. H. Karam, Proc. of DOE Solar Program Review Meeting, p. 194, Jan. (2004).

    Google Scholar 

  12. M. A. Martin, K. Emery, D. L. King, S. Igari, and W. Warta, Prog. Photovolt: Res. Appl. 13, 387 (2005). (Published online in Wiley Interscience (www.interscience. wiley.com).DOI:10.1002/pip.651.

    Article  Google Scholar 

  13. S. M. Sze, Physics of Semiconductor Devices, 2nd edition, p. 748 Wiley, New York, (1981).

    Google Scholar 

  14. S. S. Li and F. A. Lindholm, Phys. Status Solidi A 15, 237 (1973).

    Article  ADS  Google Scholar 

  15. H. Melchior and W. T. Lynch, IEEE Trans. Electron. Dev. ED-13, 829 (1966).

    Article  Google Scholar 

  16. K. K. Loi and M. Itzler, Compound Semiconductor, 6 (3), p. 44 (2000).

    Google Scholar 

  17. K. Nishida, K. Taguchi, and Y. Matsumoto, Appl. Phys. Lett. 53, 251 (1979).

    Article  ADS  Google Scholar 

  18. D. H. Lee, S. S. Li, and N. Paulter, Proc. Int. Conf. on Solid State Devices and Materials, Tokyo Japan, (1988).

    Google Scholar 

  19. T. P. Lee, C. A. Burrus, and A. G. Dentai, IEEE J. Quantum Electron. 17, 232 (1981).

    Article  ADS  Google Scholar 

  20. L. C. West and S. J. Eglash, Appl. Phys. Lett. 46, 1156 (1985).

    Article  ADS  Google Scholar 

  21. B. F. Levine, J. Appl. Phys. 74, Rl (1993).

    Article  Google Scholar 

  22. L. S. Yu, and S. S. Li, Appl. Phys. Lett. 59 (11), 1332 (1991).

    Article  ADS  Google Scholar 

  23. S. S. Li, Int. J. of High-Speed Electronics and Systems, 12 (3), pp. 761–801 (2002).

    Article  Google Scholar 

  24. M. Sandaram, T. Faska, M. Taylor, R. Williams, A. Reisinger, and S. Wang, Int. Symp. On Advanced Luminescent Materials and Quantum Confinement, edited by M. Cahay, Electrochemical Society (ECS) Proc. vol. PV-99-22, pp. 459–465 (1999).

    Google Scholar 

  25. M. A. Dodd and L. T. Claiborn, Proc. of 5th Int. Symp. On Long Wavelength Infrared Photodetectors and Array, ECS-97-33, pp. 22–31 (1997).

    Google Scholar 

  26. M. Z. Tidrow, J. C. Chiang, S. S. Li, and K. Bacher, Appl. Phys. Lett., 70 (1991) 859.

    Article  ADS  Google Scholar 

  27. S. S. Li and M. Z. Tidrow, Handbook of Nanostructured Materials and Technology, Chapter 9: Quantum Well Infrared Photodetectors, editor: H. S. Nalwa, vol. 4, pp. 561–619 (2000).

    Google Scholar 

  28. L. Jiang, S. S. Li, N. T. Yeh, J. I. Chyi, C. E. Ross, and K. S. Jones, Appl Phys. Letters., 82 (12), pp. 1986–88 (2003).

    Article  ADS  Google Scholar 

  29. L. Jiang, S. S. Li, N. T. Yeh, J. I. Chyi, and M. Z. Tidrow, Electronics Letters, 38 (22), (2002) 1374.

    Article  Google Scholar 

  30. Bibliography

    Google Scholar 

  31. A. A. Bergh and P. J. Dean, Light-Emitting Diodes, Clarendon Press, Oxford (1976).

    Google Scholar 

  32. F. Capasso, “Multilayer Avalanche Photodiodes and Solid State Photomultipliers,” Laser Focus/Electro-Optics, July (1984).

    Google Scholar 

  33. H. C. Casey, Jr. and M. B. Panish, Heterojunction Lasers, Academic Press, New York (1978).

    Google Scholar 

  34. L. Figueroa and C. W. Slayman, “A Novel Heterostructure Interdigital Photodetector (HIP) with Picosecond Optical Response,” IEEE Electron Dev. Lett. EDL-2, No. 8, Aug. (1981).

    Google Scholar 

  35. K. Gillessen and W. Shairer, Light Emitting Diodes, Prentice-Hall, New York (1987).

    Google Scholar 

  36. H. J. Hovel, in: Solar Cells, Semiconductors and Semimetals, Vol. 11 (R. K. Willardson and A. C. Beer, eds.), Academic Press, New York (1975).

    Google Scholar 

  37. S. Kim, H. Mohseni, M. Erdtmann, E. Michel, C. Jelen, and M. Razeghi, Appl. Phys. Lett. 73, 963, (1998).

    Article  ADS  Google Scholar 

  38. H. Kressel, in: Fundamentals of Optical Fiber Communications (M. K. Barnoski, ed.), 2nd ed., Chap. 4, Academic Press, New York (1981).

    Google Scholar 

  39. C. H. Lee, Picosecond Optoelectronic Devices, Academic Press, New York (1984).

    Google Scholar 

  40. S. Maimon, F. Finkman, G. Bahir, S. E. Schacham, J. M. Garcia, P. M. Petroff, Appl. Phys. Letts., 73, 2003 (1998).

    Article  ADS  Google Scholar 

  41. H. Melchior, M. P. Lepselter, and S. M. Sze, “Metal–Semiconductor Avalanche Photodiode,” IEEE Device Research Conf., Boulder, Colo., June 17–19 (1968).

    Google Scholar 

  42. H. Melchior, A. R. Hartman, D. P. Schinke, and T. E. Seidel, “Planar Epitaxial Silicon Avalanche Photodiode,” Bell Syst. Tech. J. 57, 1791 (1978).

    Google Scholar 

  43. R. J. McIntyre, “The Distribution of Gains in Uniformly Avalanche Photodiodes: Theory,” IEEE Trans. Electron Dev. ED-19, 703 (1972).

    Article  Google Scholar 

  44. J. Muller, “Photodiodes for Optical Communication,” Adv. Electron. Electron. Phys. 55, 189 (1981).

    Google Scholar 

  45. L. D. Partain, M. S. Kuryla, R. E. Weiss, R. A. Ransom, P. S. McLeod, L. M. Fraas, and J. A. Cape, “26.1% Solar Cell Efficiency for Ge Mechanically Stacked under GaAs,” J. Appl Phys. 62, 3010 (1987).

    Article  ADS  Google Scholar 

  46. J. Philips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta, IEEE J. of Quantum Electron. 35, 936, (1999).

    Article  ADS  Google Scholar 

  47. G. E. Stillman, L. W. Cook, N. Tabatabaie, G. E. Bulman, and V. M. Robbins, “InGaAsP Photodiodes,” IEEE Electron Dev. 30, 364 (1983).

    Article  ADS  Google Scholar 

  48. W. T. Tsang, “Lightwave Communication Technology: Photodetectors,” in: Semiconductors and Semimetals, Vol. 22-D, Academic Press, New York (1985).

    Google Scholar 

  49. S. Y. Wang, S. D. Lin, H. W. Wu, C. P. Lee, Infrared Physics & Technology 42, 473, (2001).

    Article  ADS  Google Scholar 

  50. R. K. Willardson and A. C. Beer, Infrared Detectors, Semiconductors and Semimetals, Vol. 12, Academic Press, New York (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Li, S.S. (2006). Solar Cells and Photodetectors. In: Li, S.S. (eds) Semiconductor Physical Electronics. Springer, New York, NY. https://doi.org/10.1007/0-387-37766-2_12

Download citation

Publish with us

Policies and ethics