Skip to main content

Abstract

In this chapter, the basic device physics, the ideal static and dynamic characteristics, the operation principles, and practical applications of p-n junctions will be described. Unlike a Schottky diode (a majority carrier device), a p-n junction diode is known as a minority carrier device since the current conduction is controlled by the diffusion of minority carriers (i.e., electrons in the p region and holes in the n region) in a p-n junction diode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Shockley, Bell Syst. Tech. J., 28, 435 (1949); Electrons and Holes in Semiconductors, D. Van Nostrand, Princeton, N. J. (1950).

    Google Scholar 

  2. C. T. Sah and R. N. Noyce, Proc. IRE 45, 1228 (1957).

    Article  Google Scholar 

  3. J. L. Moll, Proc. IRE 46, 1076 (1958).

    Article  Google Scholar 

  4. A. S. Grove, Physics and Technology of Semiconductor Devices, Chapter 6, Wiley, New York (1967), p. 192.

    Google Scholar 

  5. S. M. Sze and G. Gibbons, Appl. Phys. Lett. 8, 111 (1966).

    Article  ADS  Google Scholar 

  6. R. L. Anderson, Solid State Electron. 5, 341 (1962).

    Article  ADS  Google Scholar 

  7. Bibliography

    Google Scholar 

  8. R. Dingle, H. L. Stormer, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 33, 665 (1978).

    Article  ADS  Google Scholar 

  9. W R. Frensky and H. Kroemer, Phys. Rev. B 16, 2642 (1977).

    Article  ADS  Google Scholar 

  10. R. N. Hall, Phys. Rev. 87, 387 (1952).

    Article  ADS  Google Scholar 

  11. A. G. Miles and D. L. Feucht, Heterojunctions and Metal–Semiconductor Junctions, Academic Press, New York (1972).

    Google Scholar 

  12. J. L. Moll, Physics of Semiconductors, McGraw-Hill, New York (1964).

    MATH  Google Scholar 

  13. R. S. Muller and T. L Kamins, Device Electronics for Integrated Circuits, Wiley, New York (1977).

    Google Scholar 

  14. C. T. Sah, R. N. Noyce, and W. Shockley, Proc. IRE 45, 1228 (1957).

    Article  Google Scholar 

  15. W. Shockey, Electrons and Holes in Semiconductors, Van Nostrand, Princeton (1950).

    Google Scholar 

  16. W. Shockley and W. T. Read, Phys. Rev. 87, 835 (1952).

    Article  MATH  ADS  Google Scholar 

  17. S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, New York (1981).

    Google Scholar 

  18. E. S. Yang, Microelectronic Devices, McGraw-Hill, New York (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Li, S.S. (2006). p-n Junction Diodes. In: Li, S.S. (eds) Semiconductor Physical Electronics. Springer, New York, NY. https://doi.org/10.1007/0-387-37766-2_11

Download citation

Publish with us

Policies and ethics