Skip to main content

Biological Clues for Up-to-Date Artificial Neurons

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, W.C., and Bear, M.F. (1996) Metaplasticity: the plasticity of synaptic plasticity. Trends in Neuroscience 19:126–130.

    Article  Google Scholar 

  • Abraham, W.C., and Tate, W.P. (1997) Metaplasticity: a new vista across the field of synaptic plasticity, Progress in Neurobiology 52:303–323.

    Article  Google Scholar 

  • Artola, A , Brocher, S., and Singer, W. (1990) Different voltage-dependent threshold for inducing long-term depression and long-term potentiation in slices of rat visual còrtex. Nature 347:69–72

    Article  Google Scholar 

  • Bear, M.F., Connors, B.W., and Paradise, M.A. (2001) Neuroscience. Exploring the Brain. Lippincott, Williams & Wilkins. USA

    Google Scholar 

  • Bienestock, E.L., Cooper, L.N., and Munro, P.W. (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual còrtex. The Journal of Neurosciences 2(1):32–48.

    Google Scholar 

  • Carandini, M., and Heeger, D.J. (1994) Summation and division by neurons in primate visual cortex. Science 264(5163):1333–6.

    Article  Google Scholar 

  • Carpenter, G., and Grossberg, S. (1988) The ART of adaptive pattern recognition by a self-organizing neural network. Computer 21(3):77–88

    Article  Google Scholar 

  • Deschenes, M., Madariaga-Domich, A., and Steriade, M. (1985) Dendrodendrìtic synapses in the cat reticularis thalami nucleus: a structural basis for thalamic spindle synchronization. Brain Research 334:165–168.

    Article  Google Scholar 

  • Desai, N.S., Rutherford, L.C., and Turrigiano, G.G. (1999) Plasticity in the intrinsic excitability of cortical pyramidal neurons, Nature Neurosciences 2:515–520

    Article  Google Scholar 

  • Hopfield, J.J. (1982) Neural Networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences 79:2554–2558

    Article  MathSciNet  Google Scholar 

  • Kohonen, T. (1982) Self-organized formation of topologically correct feature maps. Biological Cybernetics 43:59–69.

    Article  MATH  MathSciNet  Google Scholar 

  • Llinàs, R., and Jahnsen, H. (1982) Electrophysiology of mammalian thalamic neurones in vitro. Nature 297:406–408

    Article  Google Scholar 

  • Llinas, R., Ribary, U., Joliot, M., and Wang, X.J. (1994). Content and Context in Temporal Thalamocortical Binding. In G.Buzsaki et al. (Eds.), Temporal Coding in the Brain (pp. 151–72). Berlin: Spring-Verlag

    Google Scholar 

  • McClelland, J.L., Rumelhart, D.E., and The PDP Research Group. (1986). Parallel distributed processing: Exploration in the microstructure of cognition. Cambridge, MA: MIT Press.

    Google Scholar 

  • McClelland, J.L., and Rumelhart, D.E. (1988). Explorations in parallel distributed processing. Cambridge, MA: MIT Press.

    Google Scholar 

  • McCormick, D.A., and Pape, H.-C. (1990) Properties of a hyperpolarization activated cation current and its role in rhytmic oscillation in thalamic relay nurons. Journal of Physiology (London) 431:291–318.

    Google Scholar 

  • McCulloch, W. and Pitts, W. (1943) A logical Calculus of the Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biophysics, 1943.

    Google Scholar 

  • Ropero Pelàez, J. (1996) A Formal Representation of Thalamus and Cortex Computation. Proceedings of the International Conference of Brain Processes, Theories and Models. Edited by Roberto Moreno-Dìaz and Josè Mira-Mira. MIT Press.

    Google Scholar 

  • Ropero Pelàez, J. (1997) Plato’s theory of ideas revisited. Neural Networks, 1997 Special issue 10(7): 1269–1288.

    Google Scholar 

  • Ropero Pelaez, J., and Godoy Simoes, M. (1999) A computational model of synaptic metaplasticity. Proceedings of the International Joint Conference of Neural Networks 1999. Washington DC.

    Google Scholar 

  • Ropero Pelàez, J. (2000) Towards a neural network based therapy for hallucinatory disorders. Neural Networks, 2000 Special Issue 13(2000):1047–1061.

    Google Scholar 

  • Ropero Pelàez, J. (2003) Phd Thesis in Neuroscience: Aprendizaje en un modelo computacional del tàlamo. Faculty of Medicine. Autònoma University of Madrid.

    Google Scholar 

  • Rosenblatt, F. (1956) The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review 65:386–408

    Article  Google Scholar 

  • Steriade, M., Domich, L., Oakson, G., and Deschenes, M. (1987) The deafferented reticular thalamic nucleus generates spindle rhythmicity. The Journal of Neurophysiology 57:260–273.

    Google Scholar 

  • Steriade, M., and Llinas, R.R. (1988), The Functional State of the Thalamus and the Associated Neuronal Interplay. Physiological Review 68(3):649–739.

    Google Scholar 

  • Tompa, P., and Friedrich, P. (1998). Synaptic metaplasticity and the local charge effect in postsynaptic densities. Trends in Neuroscience 21(3):97–101.

    Article  Google Scholar 

  • Turrigiano, G.G., Leslie, K.R., Desai, N.S., Rutherford, L.C., and Nelson, S.B. (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391:892–896.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Pelàez, J.R., Castillo Piqueira, J.R. (2007). Biological Clues for Up-to-Date Artificial Neurons. In: Andina, D., Pham, D.T. (eds) Computational Intelligence. Springer, Boston, MA. https://doi.org/10.1007/0-387-37452-3_6

Download citation

Publish with us

Policies and ethics