Topographic images

Part of the NanoScience and Technology book series (NANO)

7.7 Summary

In reflecting on the simulations and the gradual resolution of the puzzle, it becomes clear that only a very limited part of the whole physical situation is actually accessible in the experiments. The change of the position of the SPM tip is a result of measurements of constant-current/height contours. But the change of the position of surface atoms under given experimental conditions cannot be determined. This makes simulations the only source of information on both the stability of a system under specific conditions determined from interaction energies, the elastic limit of a surface and tip system, and the relation between true surface properties (properties of its ground state) and virtual properties that are due to the measurement itself. It might seem that the last distinction is far-fetched. But one only has to consider that atomic positions on a surface can be determined by a number of different methods, e.g., electron diffraction, photon diffraction, and electron tunneling, to understand that different experimental methods might lead to different results. And in this case, the possibility in theory to switch on or off a particular effect makes it quite adaptable to a whole range of experimental data. This becomes even more important in the case of SFM.


Tunneling Current Topographic Image Simulated Image Density Contour Hollow Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.W. Plummer. Surf. Sci., 500:1, 2002.CrossRefGoogle Scholar
  2. 2.
    N. D. Lang. Phys. Rev. B, 34:5947, 1986.CrossRefGoogle Scholar
  3. 3.
    J. Jacobsen, B. Hammer, K. W. Jacobsen, and J. K. Norskov. Phys. Rev. B, 52:14954, 1995.CrossRefGoogle Scholar
  4. 4.
    P. Sautet, J. Dunphy, D. F. Ogletree, and M. Salmeron. Surf. Sci., 295:347, 1993.CrossRefGoogle Scholar
  5. 5.
    F. Biscarini, C. Bustamante, and V. M. Kenkre. Phys. Rev. B, 51:11089, 1995.CrossRefGoogle Scholar
  6. 6.
    L. Ruan. Phys. Rev. Lett., 70:4079, 1993.CrossRefGoogle Scholar
  7. 7.
    C.A. Ventrice. Phys. Rev. B, 49:5773, 1994.CrossRefGoogle Scholar
  8. 8.
    U. Diebold. Phys. Rev. Lett., 77:1322, 1996.CrossRefGoogle Scholar
  9. 9.
    C.I. Carlisle. Phys. Rev. Lett., 84:3899, 2000.CrossRefGoogle Scholar
  10. 10.
    H. Over. Science, 287:1474, 2000.CrossRefGoogle Scholar
  11. 11.
    Sh. K. Shaikhutdinov. Phys. Rev. Lett., 91:076102, 2000.CrossRefGoogle Scholar
  12. 12.
    F. Calleja, A. Arnau, J. J. Hinarejos, A. L. Vazquez de Parga, W. A. Hofer, P. M. Echenique, and R. Miranda. Phys. Rev. Lett., 92:206101, 2004.CrossRefGoogle Scholar
  13. 13.
    M. Lindroos, H. Pfnür, G. Held, and D. Menzel. Surf. Sci., 222:451, 1989.CrossRefGoogle Scholar
  14. 14.
    V. M. Hallmark, S. Chiang, J. F. Raboli, J. D. Swalen, and R. J. Wilson. Phys. Rev. Lett., 59:2879, 1987.CrossRefGoogle Scholar
  15. 15.
    J. V. Barth, H. Brune, G. Ertl, and R. J. Behm. Phys. Rev. B, 42:9307, 1990.CrossRefGoogle Scholar
  16. 16.
    J. Wintterlin, J. Wiechers, H. Brune, T. Gritsch, H. Höfer, and R. J. Behm. Phys. Rev. Lett., 62:59, 1989.CrossRefGoogle Scholar
  17. 17.
    C. J. Chen. Phys. Rev. Lett., 65:448, 1990.CrossRefGoogle Scholar
  18. 18.
    M. Tsukada, K. Kobayashi, N. Isshiki, and H. Kageshima. Surf. Sci. Rep., 13:265, 1991.CrossRefGoogle Scholar
  19. 19.
    J. Jacobsen, B. Hammer, K. W. Jacobsen, and J. K. Norskov. Phys. Rev. B, 52:14954, 1995.CrossRefGoogle Scholar
  20. 20.
    W. Sacks. Phys. Rev. B, 61:7656, 2000.CrossRefGoogle Scholar
  21. 21.
    G. Doyen, D. Drakova, and M. Scheffler. Phys. Rev. B, 47:9778, 1993.CrossRefGoogle Scholar
  22. 22.
    W. A. Hofer and A. J. Fisher. Phys. Rev. Lett., 91:036803, 2003.CrossRefGoogle Scholar
  23. 23.
    J. M. Soler, A. M. Baro, N. Garcia, and H. Rohrer. Phys. Rev. Lett., 57:444, 1986.CrossRefGoogle Scholar
  24. 24.
    A. R. H. Clarke, J. B. Pethica, J. A. Nieminen, F. Besenbacher, E. Laegsgaard, and I. Stensgaard. Phys. Rev. Lett., 76:1276, 1996.CrossRefGoogle Scholar
  25. 25.
    W. A. Hofer, R. A. Wolkow A. J. Fisher, and P. Grütter. Phys. Rev. Lett., 87:236104, 2001.CrossRefGoogle Scholar
  26. 26.
    W. A. Hofer and A. J. Fisher. Phys. Rev. Lett., 91:036803, 2003.CrossRefGoogle Scholar
  27. 27.
    C. J. Chen. Introduction to Scanning Tunneling Microscopy. Oxford University Press, Oxford, 1993.Google Scholar
  28. 28.
    A. Schirmeisen, G. Cross, A. Stalder, P. Grütter, and U. Dürig. New J. Phys., 1:29, 2000.CrossRefGoogle Scholar
  29. 29.
    S. Hembacher, F. J. Giessibl, J. Mannhart, and C. F. Quate. Phys. Rev. Lett., 94:056101, 2005.CrossRefGoogle Scholar
  30. 30.
    W. A. Hofer, A. J. Fisher, R. A. Wolkow, and P. Grütter. Phys. Rev. Lett., 87:236104, 2001.CrossRefGoogle Scholar
  31. 31.
    J. A. Stroscio, D. T. Pierce, A. Davies, R. J. Celotta, and M. Weinert. Phys. Rev. Lett., 75:2960, 1995.CrossRefGoogle Scholar
  32. 32.
    A. Biedermann, R. Tscheliessnig, M. Schmid, and P. Varga. Appl. Phys. A, 78:807, 2004.CrossRefGoogle Scholar
  33. 33.
    M. Schmid, H. Stadler, and P. Varga. Phys. Rev. Lett., 70:1441, 1993.CrossRefGoogle Scholar
  34. 34.
    W.A. Hofer and J. Redinger. Surf. Sci., 447:51, 2000.CrossRefGoogle Scholar
  35. 35.
    J. Shen and J. Kirschner. Surf. Sci., 500:300, 2002.CrossRefGoogle Scholar
  36. 36.
    J. Stöhr, A. Scholl, T. J. Regan, S. Anders, J. Lining, M. R. Scheinfein, H. A. Padmore, and R. L. White. Phys. Rev. Lett., 83:1862, 1999.CrossRefGoogle Scholar
  37. 37.
    S. Heinze, M. Bode, A. Kubetzka, O. Peitzsch, X. Nie, S. Blügel, and R. Wiesendanger. Science, 288:1805, 2000.CrossRefGoogle Scholar
  38. 38.
    W. A. Hofer and A. J. Fisher. Surf. Sci. Lett., 515:L487, 2002.CrossRefGoogle Scholar
  39. 39.
    W. A. Hofer and A. J. Fisher. Journal of Magnetism and Magnetic Materials, 267:139, 2003.CrossRefGoogle Scholar
  40. 40.
    W. A. Hofer, A. J. Fisher, G. R. Lopinski, and R. A.Wolkow. Phys. Rev. B, 63:085314, 2001.CrossRefGoogle Scholar
  41. 41.
    R. D. Bringans, R. I. G. Uhrberg, A. Olmstaed, and R. Z. Bachrach. Phys. Rev. B, 34:7447, 1986.CrossRefGoogle Scholar
  42. 42.
    R. J. Hamers, R. M. Tromp, and J. E. Demuth. Phys. Rev. B, 34:5343, 1986.CrossRefGoogle Scholar
  43. 43.
    R. A. Wolkow. Phys. Rev. Lett., 68:2636, 1992.CrossRefGoogle Scholar
  44. 44.
    P. Badziag, W. S. Verwoed, and M. A. Van Hove. Phys. Rev. B, 43:2058, 1991.CrossRefGoogle Scholar
  45. 45.
    R. Terborg, M Polcik, J. T. Hoeft, M. Kittel, D. I. Sayago, R. L. Tomes, and D. P. Woodruff. Phys. Rev. B, 66:085333, 2002.CrossRefGoogle Scholar
  46. 46.
    W. A. Hofer, A. J. Fisher, and R. A. Wolkow. Surf. Sci., 475:83, 2001.CrossRefGoogle Scholar
  47. 47.
    F. Wang, D. C. Sorescu, and K. D. Jordan. J. Phys. Chem., 106:1316, 2002.Google Scholar
  48. 48.
    R. A. Wolkow. Annu. Rev. Phys. Chem., 50:413, 1999.CrossRefGoogle Scholar
  49. 49.
    G. Held. J. Phys: Condens. Mat., 15:R1501, 2003.CrossRefGoogle Scholar
  50. 50.
    W. A. Hofer, A. J. Fisher, T. Bitzer, T. Rada, and N. V. Richardson. Chem. Phys. Lett., 355:347, 2002.CrossRefGoogle Scholar
  51. 51.
    A. Bilic, J. R. Reimers, W. A. Hofer, and N. S. Hush. Chem. Phys. Lett., 385:341, 2004.CrossRefGoogle Scholar
  52. 52.
    A. L. Linsebigler, G. Lu, and J. T. Yates. Chem. Rev., 95:735, 1995.CrossRefGoogle Scholar
  53. 53.
    V. E. Henrich and P. A. Cox. The Surface Science of Metal Oxides. University Press, Cambridge, 1996.Google Scholar
  54. 54.
    J. Lausmaa. J. Elec. Spec. Rel. Phen., 81:343, 1996.CrossRefGoogle Scholar
  55. 55.
    U. Diebold. Surf. Sci. Rep., 48:53, 2003.CrossRefGoogle Scholar
  56. 56.
    U. Diebold, J. F. Anderson, K. O. Ng, and D. Vanderbilt. Phys. Rev. Lett., 77:1322, 1996.CrossRefGoogle Scholar
  57. 57.
    G. Charlton, P. B. Howes, C. L. Nicklin, P. Steadman, J. S. G. Taylor, C. A. Muryn, S. P. Harte, J. Mercer, R. McGrath, D. Norman, T. S. Turner, and G. Thornton. Phys. Rev. Lett., 78(3):495, 1997.CrossRefGoogle Scholar
  58. 58.
    D. Vogtenhuber, R. Podloucky, A. Neckel, S. G. Steinemann, and A. J. Freeman. Phys. Rev. B, 49:2099, 1994.CrossRefGoogle Scholar
  59. 59.
    M. Ramamoorthy, R. D. King-Smith, and D. Vanderbilt. Phys. Rev. B, 49(11):7709, 1994.CrossRefGoogle Scholar
  60. 60.
    M. Ramamoorthy, D. Vanderbilt, and R. D. King-Smith. Phys. Rev. B, 49(23):16721, 1994.CrossRefGoogle Scholar
  61. 61.
    P. J. D. Lindan, N. M. Harrison, M. J. Gillan, and J. A. White. Phys. Rev. B, 55(23):15919, 1997.CrossRefGoogle Scholar
  62. 62.
    N. M. Harrison, X. G. Wang, J. Muscat, and M. Scheffler. Faraday Discussions, 114:305, 1999.CrossRefGoogle Scholar
  63. 63.
    A. T. Paxton and L. Thiên-Nga. Phys. Rev. B, 57:1579, 1998.CrossRefGoogle Scholar
  64. 64.
    R. Schaub, E. Wahlström, A. Rønnau, E. Lægsgaard, E. Stensgaard, and F. Besenbacher. Science, 299:377, 2003.CrossRefGoogle Scholar
  65. 65.
    S. P. Bates, G. Kresse, and M. J. Gillan. Surf. Sci., 409:336, 1998.CrossRefGoogle Scholar
  66. 66.
    P. J. D. Lindan, N. M. Harrison, and M. J. Gillan. Phys. Rev. Lett., 80:762, 1998.CrossRefGoogle Scholar
  67. 67.
    J. Muscat, N. M. Harrison, and G. Thornton. Phys. Rev. B, 59:2320, 1999.CrossRefGoogle Scholar
  68. 68.
    I. M. Brookes, C. A. Muryn, and G. Thornton. Phys. Rev. Lett., 87:266103, 2001.CrossRefGoogle Scholar
  69. 69.
    G. Liu, J. A. Rodriguez, Z. Chang, J. Hrbek, and L. González. J. Phys. Chem. B, 106:9883, 2002.CrossRefGoogle Scholar
  70. 70.
    E. Wahlström, N. Lopez, R. Schaub, P. Thostrup, A. Rønnau, C. Africh, E. Lægsgaard, J. K. Nørskov, and F. Besenbacher. Phys. Rev. Lett., 90:026101, 2003.CrossRefGoogle Scholar
  71. 71.
    K. I. Fukui, H. Onishi, and Y. Iwasawa. Phys. Rev. Lett., 79:4202–4205, 1997.CrossRefGoogle Scholar
  72. 72.
    S. H. Ke, T. Uda, and K. Terakura. Phys. Rev. B, 65:125417, 2002.CrossRefGoogle Scholar
  73. 73.
    A. S. Foster, O. H. Pakarinen, J. M. Airaksinen, J. D. Gale, and R. M. Nieminen. Phys. Rev. B, 68:195410, 2003.CrossRefGoogle Scholar
  74. 74.
    H. Onishi and Y. Iwasawa. Chem. Phys. Lett., 226:111, 1994.CrossRefGoogle Scholar
  75. 75.
    S. A. Chambers, S. Thevuthasan, Y. J. Kim, G. S. Hermann, Z. Wang, E. Tober, R. Ynzunza, and J. Morais. Chem. Phys. Lett., 267:51, 1997.CrossRefGoogle Scholar
  76. 76.
    K. I. Fukui, H. Onishi, and Y. Iwasawa. Chem. Phys. Lett., 280:296, 1997.CrossRefGoogle Scholar
  77. 77.
    S. P. Bates, G. Kresse, and M. J. Gillan. Surf. Sci., 409:336, 1998.CrossRefGoogle Scholar
  78. 78.
    P. Käckell and K. Terakura. Surf. Sci., 461:191, 2000.CrossRefGoogle Scholar
  79. 79.
    Q. Guo, I. Cocks, and E. M. Williams. J. Chem. Phys., 106:2924, 1997.CrossRefGoogle Scholar
  80. 80.
    A. Gutiérrez-Sosa, P. Martínez-Escolano, H. Raza, R. Lindsay, P. L. Wincott, and G. Thornton. Surf. Sci., 471:163, 2001.CrossRefGoogle Scholar
  81. 81.
    A. S. Foster and R. M. Nieminen. J. Chem. Phys., 121:9039, 2004.CrossRefGoogle Scholar
  82. 82.
    A. Sasahara, H. Uetsuka, and H. Onishi. Phys. Rev. B, 64:121406, 2001.CrossRefGoogle Scholar
  83. 83.
    A. Sasahara, H. Uetsuka, and H. Onishi. Surf. Sci. Lett., 481:L437, 2001.CrossRefGoogle Scholar
  84. 84.
    A. Sasahara, H. Uetsuka, and H. Onishi. J. Phys. Chem. B, 105:1, 2001.CrossRefGoogle Scholar
  85. 85.
    H. Onishi, A. Sasahara, H. Uetsuka, and T. Ishibashi. Appl. Surf. Sci., 188:257, 2002.CrossRefGoogle Scholar
  86. 86.
    A. Sasahara, H. Uetsuka, T. Ishibashi, and H. Onishi. Appl. Surf. Sci., 188:265, 2002.CrossRefGoogle Scholar
  87. 87.
    A. Sasahara, H. Uetsuka, and H. Onishi. Langmuir, 19:7474, 2003.CrossRefGoogle Scholar
  88. 88.
    A. S. Foster, A. Y. Gal, A. L. Shluger, and R. M. Nieminen. J. Phys. Chem., 109:4554, 2005.Google Scholar
  89. 89.
    R. Bennewitz, A. S. Foster, L. N. Kantorovich, M. Bammerlin, Ch. Loppacher, S. Schär, M. Guggisberg, E. Meyer, and A. L. Shluger. Phys. Rev. B, 62:2074, 2000.CrossRefGoogle Scholar
  90. 90.
    M. Bammerlin, R. Lüthi, E. Meyer, A. Baratoff, M. Guggisberg, C. Gerber, L. Howald, and H.-J. Güntherodt. Probe Microscopy, 1:3, 1997.Google Scholar
  91. 91.
    M. Reichling and C. Barth. Scanning force imaging of atomic size defects on the CaF2 (111) surface. Phys. Rev. Lett., 83:768, 1999.CrossRefGoogle Scholar
  92. 92.
    A. S. Foster, C. Barth, A. L. Shluger, and M. Reichling. Unambiguous interpretation of atomically resolved force microscopy images of an insulator. Phys. Rev. Lett., 86:2373, 2001.CrossRefGoogle Scholar
  93. 93.
    C. Barth, A. S. Foster, M. Reichling, and A. L. Shluger. Contrast formation in atomic resolution scanning force microscopy on CaF2 (111): Experiment and theory. J. Phys.: Condens. Matter, 13:2061, 2001.CrossRefGoogle Scholar
  94. 94.
    A. S. Foster, C. Barth, A. L. Shluger, R. M. Nieminen, and M. Reichling. Phys. Rev. B, 66:235417, 2002.CrossRefGoogle Scholar
  95. 95.
    D. J. Binks. PhD Thesis, University of Surrey, 1994.Google Scholar
  96. 96.
    T. S. Bush, J. D. Gale, C. R. A. Catlow, and P. D. Battle. J. Mater. Chem., 4:832, 1994.Google Scholar
  97. 97.
    A. I. Livshits, A. L. Shluger, A. L. Rohl, and A. S. Foster. Phys. Rev. B, 59:2436, 1999.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Personalised recommendations