Bringing Theory to Experiment in SFM

Part of the NanoScience and Technology book series (NANO)

6.5 Summary

In this chapter we have shown how theorists actually proceed from a given SFM experimental result to arrive at a realistic simulation of the imaging process. It turned out that the key to successful modeling lies in the ability to successively refine the theoretical model, especially with regard to allowing flexibility in tip selection. This process is inherently iterative: it is usually not possible to arrive at a consistent model that agrees with experimental data without several iteration cycles to fine-tune the model. Contrary to what one might believe, theoretical modelling of SFM experiments is therefore no black box, at least not at the present stage. A general approach for real understanding in SFM simulations must include the following components:
  • Justification for the interaction simulation method itself: empirical potentials can be useful, but must be carefully tested, and are usually inflexible.

  • An attempt to model the real experimental tip if enough data exists, or at least several plausible models must be considered.

  • For high-resolution imaging, tip and surface relaxations must be included since they have a significant influence on the interactions.

  • The dynamics of the cantilever and experimental electronics must be treated at a level appropriate for the phenomenon being simulated.


Surface Interaction Force Curve Atomic Resolution Simulated Image Kink Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Guggisberg, M. Bammerlin, Ch. Loppacher, O. Pfeiffer, A. Abdurixit, V. Barwich, R. Bennewitz, A. Baratoff, E. Meyer, and H.-J. Güntherodt. Phys. Rev. B, 61:11151, 2000.CrossRefGoogle Scholar
  2. 2.
    A. S. Foster, L. N. Kantorovich, and A. L. Shluger. Appl. Phys. A, 72:S59, 2000.Google Scholar
  3. 3.
    C. Barth, A. S. Foster, M. Reichling, and A. L. Shluger. Contrast formation in atomic resolution scanning force microscopy on CaF2 (111): Experiment and theory. J. Phys.: Condens. Matter, 13:2061, 2001.CrossRefGoogle Scholar
  4. 4.
    R. H. French, R. M. Cannon, L. K. DeNoyer, and Y. M. Chiang. Solid State Ionics, 75:13, 1995.CrossRefGoogle Scholar
  5. 5.
    A. I. Livshits and A. L. Shluger. Role of tip contamination in scanning force microscopy imaging of ionic surfaces. Faraday Discuss., 106:425, 1997.CrossRefGoogle Scholar
  6. 6.
    A. I. Livshits, A. L. Shluger, A. L. Rohl, and A. S. Foster. Phys. Rev. B, 59:2436, 1999.CrossRefGoogle Scholar
  7. 7.
    A. S. Foster, A. L. Rohl, and A. L. Shluger. Appl. Phys. A, 72:S31, 2000.Google Scholar
  8. 8.
    K. I. Fukui, H. Onishi, and Y. Iwasawa. Phys. Rev. Lett., 79:4202–4205, 1997.CrossRefGoogle Scholar
  9. 9.
    F. J. Giessibl, S. Hembacher, H. Bielefeldt, and J. Mannhart. Science, 289:422, 2000.CrossRefGoogle Scholar
  10. 10.
    R. Erlandsson, L. Olsson, and P. Mártensson. Phys. Rev. B, 54:R8309, 1996.CrossRefGoogle Scholar
  11. 11.
    H. Hosoi, K. Sueoka, K. Hayakawa, and K. Mukasa. Appl. Surf. Sci., 157, 2000.Google Scholar
  12. 12.
    W. Allers, S. Langkat, and R. Wiesendanger. Appl. Phys. A, 72:S27, 2001.CrossRefGoogle Scholar
  13. 13.
    A. I. Livshits and A. L. Shluger. Phys. Rev. B, 56:12482, 1997.CrossRefGoogle Scholar
  14. 14.
    R. Pérez, I. Stich, M. C. Payne, and K. Terakura. Phys. Rev. B, 58:10835, 1998.CrossRefGoogle Scholar
  15. 15.
    S. H. Ke, T. Uda, R. Pérez, I. Stich, and K. Terakura. First-principles investigation of tip-surface interaction on a GaAs(110) surface: Implications for atomic force and scanning tunneling microscopies. Phys. Rev. B, 60:11631, 1999.CrossRefGoogle Scholar
  16. 16.
    A. L. Shluger, A. I. Livshits, A. S. Foster, and C. R. A. Catlow. J. Phys.: Condens. Matter, 11:R295, 1999.CrossRefGoogle Scholar
  17. 17.
    A. L. Shluger and A. L. Rohl. Topics in Catalysis, 3:221, 1996.CrossRefGoogle Scholar
  18. 18.
    R. Bennewitz, A. S. Foster, L. N. Kantorovich, M. Bammerlin, Ch. Loppacher, S. Schär, M. Guggisberg, E. Meyer, and A. L. Shluger. Phys. Rev. B, 62:2074, 2000.CrossRefGoogle Scholar
  19. 19.
    R. Pérez, M. C. Payne, I. Stich, and K. Terakura. Phys. Rev. Lett., 78:678, 1997.CrossRefGoogle Scholar
  20. 20.
    J. Tóbik, I. Stich, R. Pérez, and K. Terakura. Simulation of tip-surface interactions in atomic force microscopy of an InP(110) surface with a si tip. Phys. Rev. B, 60:11639, 1999.CrossRefGoogle Scholar
  21. 21.
    J. Tóbik, I. Stich, and K. Terakura. Phys. Rev. B, 63:245324, 2001.CrossRefGoogle Scholar
  22. 22.
    S. H. Ke, T. Uda, I. Stich, and K. Terakura. Phys. Rev. B, 63:245323, 2001.CrossRefGoogle Scholar
  23. 23.
    A. S. Foster, A. Y Gal, J. M. Airaksinen, O. H. Pakarinen, Y. J. Lee, J. D. Gale, A. L. Shluger, and R. M. Nieminen. Phys Rev. B, 68:195420, 2003.CrossRefGoogle Scholar
  24. 24.
    A. S. Foster, A. Y. Gal, J. D. Gale, Y. J. Lee, R. M. Nieminen, and A. L. Shluger. Phys. Rev. Lett., 92:036101, 2004.CrossRefGoogle Scholar
  25. 25.
    S. H. Ke, T. Uda, and K. Terakura. Phys. Rev. B, 65:125417, 2002.CrossRefGoogle Scholar
  26. 26.
    A. S. Foster, O. H. Pakarinen, J. M. Airaksinen, J. D. Gale, and R. M. Nieminen. Phys. Rev. B, 68:195410, 2003.CrossRefGoogle Scholar
  27. 27.
    T. Eguchi and Y. Hasegawa. Phys. Rev. Lett., 89:266105, 2002.CrossRefGoogle Scholar
  28. 28.
    A. Y. Gal and A. L. Shluger. Nanotec., 15:S108, 2004.CrossRefGoogle Scholar
  29. 29.
    P. V. Sushko, A. S. Foster, L. N. Kantorovich, and A. L. Shluger. Appl. Surf. Sci., 144–145:608, 1999.CrossRefGoogle Scholar
  30. 30.
    R. Oja and A. S. Foster. Nanotechnology, 16:S7, 2005.CrossRefGoogle Scholar
  31. 31.
    A. L. Shluger, L. N. Kantorovich, A. I. Livshits, and M. J. Gillan. Phys. Rev. B, 56:15332, 1997.CrossRefGoogle Scholar
  32. 32.
    T. Trevethan and L. Kantorovich. Nanotechnology, 16:S79, 2005.CrossRefGoogle Scholar
  33. 33.
    H. Hölscher, U. D. Schwarz, and R. Weisendanger. Appl. Surf. Sci., 140:344, 1999.CrossRefGoogle Scholar
  34. 34.
    T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar. J. Appl. Phys., 69:668, 1991.CrossRefGoogle Scholar
  35. 35.
    F. J. Giessibl. Phys. Rev. B, 56:16010, 1997.CrossRefGoogle Scholar
  36. 36.
    F. J. Giessibl. Rev. Mod. Phys., 75:949, 2003.CrossRefGoogle Scholar
  37. 37.
    F. J. Giessibl, H. Bielefeldt, S. Hembacher, and J. Mannhart. Ann. Phys. (Liepzig), 10:887, 2001.CrossRefGoogle Scholar
  38. 38.
    R. García and R. Pérez. Surf. Sci. Rep., 47:197, 2002.CrossRefGoogle Scholar
  39. 39.
    U. Dürig. Interaction sensing in dynamic force microscopy. New J. Phys., 2, 2000.Google Scholar
  40. 40.
    M. Gauthier, N. Sasaki, and M. Tsukada. Phys. Rev. B, 64:085409, 2001.CrossRefGoogle Scholar
  41. 41.
    G. Couturier, R. Boisgard, L. Nony, and J. P. Aimé. Rev. Sci. Instr., 74:2726, 2003.CrossRefGoogle Scholar
  42. 42.
    M. Gauthier, R. Perez, T. Arai, M. Tomitori, and M. Tsukada. Phys. Rev. Lett., 89:146104, 2002.CrossRefGoogle Scholar
  43. 43.
    J. E. Sader and S. P. Jarvis. Phys. Rev. B, 70:012303, 2004.CrossRefGoogle Scholar
  44. 44.
    S. Hembacher, F. J. Giessibl, and J. Mannhart. Science, 305:380, 2004.CrossRefGoogle Scholar
  45. 45.
    R. Lüthi, E. Meyer, M. Bammerlin, A. Baratoff, L. Howard, C. Gerber, and H.-J. Güntherodt. Atomic resolution in dynamic force microscopy across steps. Surf. Rev. Lett., 4:1025, 1997.CrossRefGoogle Scholar
  46. 46.
    M. Gauthier and M. Tsukada. Theory of noncontact dissipation force microscopy. Phys. Rev. B, 60:11716, 1999.CrossRefGoogle Scholar
  47. 47.
    S. P. Jarvis, H. Yamada, K. Kobayashi, A. Toda, and H. Tokumoto. Appl. Surf. Sci., 157:314, 2000.CrossRefGoogle Scholar
  48. 48.
    S. Morita, R. Wiesendanger, and E. Meyer, editors. Noncontact Atomic Force Microscopy, chapter 20, page 395. Springer, Berlin, 2002.Google Scholar
  49. 49.
    S. Morita, R. Wiesendanger, and E. Meyer, editors. Noncontact Atomic Force Microscopy. Springer, Berlin, 2002.Google Scholar
  50. 50.
    N. Sasaki and M. Tsukada. Appl. Surf. Sci., 140:339, 1999.CrossRefGoogle Scholar
  51. 51.
    A. Abdurixit, T. Bonner, A. Baratoff, and E. Meyer. Appl. Surf. Sci., 157:355, 2000.CrossRefGoogle Scholar
  52. 52.
    L. N. Kantorovich. Phys. Rev. Lett., 89:096105, 2002.CrossRefGoogle Scholar
  53. 53.
    T. Trevethan and L. Kantorovich. Nanotechnology, 15:S34, 2004.CrossRefGoogle Scholar
  54. 54.
    T. Trevethan and L. Kantorovich. Nanotechnology, 15:S44, 2004.CrossRefGoogle Scholar
  55. 55.
    T. Trevethan and L. Kantorovich. Phys. Rev. B, 70:115411, 2004.CrossRefGoogle Scholar
  56. 56.
    L. N. Kantorovich and T. Trevethan. Phys. Rev. Lett, 93:236102, 2004.CrossRefGoogle Scholar
  57. 57.
    L. Bergström. Adv. Coll. Int. Sci., 70:125, 1997.CrossRefGoogle Scholar
  58. 58.
    H. Hölscher, W. Allers, U. D. Schwarz, A. Schwarz, and R. Wiesendanger. Appl. Phys. A, 72:S35, 2001.Google Scholar
  59. 59.
    P. Markiewicz and M. C. Goh. Langmuir, 10:5, 1994.CrossRefGoogle Scholar
  60. 60.
    C. Barth and C. R. Henry. Nanotechnology, 15:1264, 2004.CrossRefGoogle Scholar
  61. 61.
    S. Giorgio, C. Chapon, C. R. Henry, G. Nihoul, and J. M. Penisson. Phil. Mag. A, 64:87, 1991.Google Scholar
  62. 62.
    L. M. Molina and B. Hammer. Phys. Rev. Lett., 90:206102, 2003.CrossRefGoogle Scholar
  63. 63.
    K. Cooper, A. Gupta, and S. Beaudoin. J. Coll. Int. Sci., 234:284, 2001.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Personalised recommendations