Advertisement

Transport in the Low Conductance Regime

Chapter
  • 2.4k Downloads
Part of the NanoScience and Technology book series (NANO)

5.7 Summary

In this chapter we have presented an overview over the most common methods used in tunneling problems, which are, in increasing order of complexity: the Tersoff-Hamann model, the Bardeen model, the Landauer-Büttiker model, and the Keldysh model. The treatment of the tunneling junction in these models is described by one of the following: restricted to the surface only (Tersoff-Hamann); includes both sides of the junction, without considering interference effects (Bardeen); is based on elastic tunneling conditions (Landauer-Büuttiker); includes the full nonequilibrium formulation of the problem (Keldysh). Readers interested in a general formulation of transport theory are referred to the previous chapter, where the whole framework is treated in some detail.

Keywords

Tunneling Junction Tunneling Current Magnetic Tunneling Junction Separation Surface Unoccupied State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Tersoff and D. R. Hamann. Phys. Rev. Lett., 50:1998, 1985.CrossRefGoogle Scholar
  2. 2.
    J. Tersoff and D. R. Hamann. Phys. Rev. B, 31:805, 1985.CrossRefGoogle Scholar
  3. 3.
    J. Bardeen. Phys. Rev. Lett., 6:57, 1961.CrossRefGoogle Scholar
  4. 4.
    M. Bütticker, Y. Imry, R. Landauer, and S. Pinhas. Phys. Rev. B, 31:6207, 1985.CrossRefGoogle Scholar
  5. 5.
    L. V. Keldysh. Sov. Phys. JETP, 20:1018, 1965.Google Scholar
  6. 6.
    Y. Meir and N. S. Wingreen. Phys. Rev. Lett., 68:2512, 1992.CrossRefGoogle Scholar
  7. 7.
    A. A. Lucas. Europhys. News, 21:63, 1990.Google Scholar
  8. 8.
    W.A. Hofer and J. Redinger. Surf. Sci., 447:51, 2000.CrossRefGoogle Scholar
  9. 9.
    C. J. Chen. Introduction to Scanning Tunneling Microscopy. Oxford University Press, Oxford, 1993.Google Scholar
  10. 10.
    J. C. Chen. Phys. Rev. Lett., 65:448, 1990.CrossRefGoogle Scholar
  11. 11.
    P. Hohenberg and W. Kohn. Phys. Rev., 136:B864, 1964.CrossRefGoogle Scholar
  12. 12.
    W. Kohn and L. J. Sham. Phys. Rev., 140:A1133, 1965.CrossRefGoogle Scholar
  13. 13.
    P. Sautet and C. Joachim. Ultramicroscopy, 42:115, 1992.CrossRefGoogle Scholar
  14. 14.
    J. Taylor, H. Guo, and J. Wang. Phys. Rev. B, 63:245407, 2001.CrossRefGoogle Scholar
  15. 15.
    K. Reuter, P. L. de Andres, F. J. Garcia-Vidal, and F. Flores. Phys. Rev. B, 63:205325, 2001.CrossRefGoogle Scholar
  16. 16.
    T. E. Feuchtwang. Phys. Rev. B, 10:4135, 1974.CrossRefGoogle Scholar
  17. 17.
    T. E. Feuchtwang. Phys. Rev. B, 12:3979, 1975.CrossRefGoogle Scholar
  18. 18.
    T. E. Feuchtwang. Phys. Rev. B, 13:517, 1976.CrossRefGoogle Scholar
  19. 19.
    S. Datta. Transport in Mesoscopic Systems. Cambridge University Press, Cambridge UK, 1995.Google Scholar
  20. 20.
    K. Palotas and W. A. Hofer. J. Phys: Cond. Mat., 17:2705, 2005.CrossRefGoogle Scholar
  21. 21.
    M. Di Ventra and N. D. Lang. Phys. Rev. B, 65:045402, 2002.CrossRefGoogle Scholar
  22. 22.
    J. Taylor, H. Guo, and J. Wang. Phys. Rev. B, 63:245407, 2001.CrossRefGoogle Scholar
  23. 23.
    M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro. Theory of single molecule vibrational spectroscopy and microscopy. Phys. Rev. B, 65:165401, 2002.CrossRefGoogle Scholar
  24. 24.
    F. J. Garcia-Vidal, F. Flores, and S. G. Davidson. Progr. Surf. Sci., 74:177, 2003.CrossRefGoogle Scholar
  25. 25.
    N. Lorente and M. Persson. Phys. Rev. Lett., 85:2997, 2000.CrossRefGoogle Scholar
  26. 26.
    W. A. Hofer and A. J. Fisher. Phys. Rev. Lett., 91:036803, 2003.CrossRefGoogle Scholar
  27. 27.
    J. A. Stroscio, D. T. Pierce, A. Davies, R. J. Celotta, and M. Weinert. Phys. Rev. Lett., 75:2960, 1995.CrossRefGoogle Scholar
  28. 28.
    T. E. Feuchtwang. Phys. Rev. B, 13:517, 1976.CrossRefGoogle Scholar
  29. 29.
    J. B. Pendry, A. B. Pretre, and B. C. H. Krutzen. J. Phys. Condens. Mat., 3:4313, 1991.CrossRefGoogle Scholar
  30. 30.
    N. Lorente and M. Persson. Faraday Discuss., 117, 2000.Google Scholar
  31. 31.
    A. Zawadowski. Phys. Rev., 163:163, 1967.CrossRefGoogle Scholar
  32. 32.
    J. A. Appelbaum and W. F. Brinkman. Phys. Rev., 186:464, 1969.CrossRefGoogle Scholar
  33. 33.
    J. Li, W.-D. Schneider, R. Berndt, and B. Delley. Phys. Rev. Lett., 80:2893, 1998.CrossRefGoogle Scholar
  34. 34.
    N. Lorente. Verh. DPG, 2003.Google Scholar
  35. 35.
    G. D. Mahan. Many-Particle Physics. Plenum Press, New York, 1990.Google Scholar
  36. 36.
    C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James. J. Phys. C: Solid State Phys., 5:21, 1972.CrossRefGoogle Scholar
  37. 37.
    J. Rammer and H. Smith. Rev. Mod. Phys., 58, 1994.Google Scholar
  38. 38.
    M. Head-Gordon and J.C. Tully. Phys. Rev. B, 46:1853, 1992.CrossRefGoogle Scholar
  39. 39.
    M. Head-Gordon and J.C. Tully. J. Chem. Phys., 103:10137, 1999.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Personalised recommendations