Electron Transport Theory

Part of the NanoScience and Technology book series (NANO)

4.5 Summary

We have given in this chapter an introduction to the current state of electron transport theory, in view of applications to tunneling problems. The theoretical framework, based on Green’s functions of open systems, was shown to be adaptable, via its perturbative extension into nonequilibrium environments, to treat all relevant physical processes at the atomic scale, essentially from first principles. The present implementations rely on tight-binding schemes or local orbital geometry; within these limits the theory can cope with finite-bias potentials and inelastic effects due to electron-electron or electron-phonon interactions. It can be foreseen that the framework, once it is extended to cover also plane-wave and full-potential methods, will provide the backbone of transport simulations on the atomic scale, whenever high accuracy is the decisive issue.


Spectral Function Transmission Probability Nonequilibrium Condition Outgoing Wave Applied Bias Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further reading


  1. S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge (1995).Google Scholar
  2. H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer Series in solid State Sciences, Vol. 123, Springer Berlin (1996).Google Scholar


  1. J. H. Davies, S. Hershfield, P. Hyldgaard, J. W. Wilkins, Physical Review B 47, 4603 (1993).CrossRefGoogle Scholar
  2. J. Taylor, H. Guo, and J. Wang, Physical Review B 63, 245407 (2001).CrossRefGoogle Scholar
  3. M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Physical Review B 65, 165401 (2002).CrossRefGoogle Scholar
  4. F. Michael and M. D. Johnson, Physica B 339, 31 (2003).CrossRefGoogle Scholar

In depth

  1. J. Rammer and H. Smith, Reviews of Modern Physics 58, 323 (1994).CrossRefGoogle Scholar
  2. T. E. Feuchtwang, Physical Review B 13, 517 (1976).CrossRefGoogle Scholar
  3. D. C. Langreth, 1975 NATO Advanced Study Institute on Linear and Nonlinear Electron Transport in Solids, Antwerpen 1975, Vol B17, Plenum, New York (1976).Google Scholar
  4. C. Caroli, R. Combescot, P. Nozieres, D. Saint-James, Journal of Physics C 5, 21 (1972).CrossRefGoogle Scholar
  5. L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics, Benjamin, New York (1962).Google Scholar
  6. L. V. Keldysh, Soviet Physical Journal 20, 1018 (1965).Google Scholar


  1. 1.
    S. Datta. Transport in Mesoscopic Systems. Cambridge University Press, Cambridge UK, 1995.Google Scholar
  2. 2.
    H. Haug and A.-P. Jauho. Quantum Kinetics in Transport and Optics of Semiconductors. Springer Series in solid State Sciences, Vol. 123, Springer Berlin, 1996.Google Scholar
  3. 3.
    E. Scheer, N. Agrait, J. C. Cuevas, A. L. Yegati, B. Ludolph, A. Martin-Rodero, G. Rubio Pollinger, J. M. van Ruitenbeek, and C. Urbina. Nature, 394:154, 1998.CrossRefGoogle Scholar
  4. 4.
    D. S. Fisher and P. A. Lee. Phys. Rev. B, 23:6851, 1981.CrossRefGoogle Scholar
  5. 5.
    M. Bütticker, Y. Imry, R. Landauer, and S. Pinhas. Phys. Rev. B, 31:6207, 1985.CrossRefGoogle Scholar
  6. 6.
    J. Taylor. Ab-initio Modelling of Transport in Atomic Scale Devices. PhD thesis, McGill University, Montreal, Canada, 2000.Google Scholar
  7. 7.
    W. Kohn and L. J. Sham. Phys. Rev., 140:A1133, 1965.CrossRefGoogle Scholar
  8. 8.
    L. V. Keldysh. Sov. Phys. JETP, 20:1018, 1965.Google Scholar
  9. 9.
    J. A. Appelbaum and W. F. Brinkman. Phys. Rev., 186:464, 1969.CrossRefGoogle Scholar
  10. 10.
    C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James. J. Phys. C: Solid State Phys., 5:21, 1972.CrossRefGoogle Scholar
  11. 11.
    J. Rammer and H. Smith. Rev. Mod. Phys., 58, 1994.Google Scholar
  12. 12.
    D. Ordejon, D. Drabold, R. Martin, and M. P. Grumbach. Phys. Rev. B, 51:1456, 1996.CrossRefGoogle Scholar
  13. 13.
    D. G. Pettifor and D. L. Weaire. The Recursion Method and Its Applications. Springer Verlag, Berlin, 1985.Google Scholar
  14. 14.
    S. Y. Wu, J. Cocks, and C. S. Jahanthi. Phys. Rev. B, 49:7957, 1994.CrossRefGoogle Scholar
  15. 15.
    M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro. Theory of single molecule vibrational spectroscopy and microscopy. Phys. Rev. B, 65:165401, 2002.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Personalised recommendations