Skip to main content

Tight Junctions in CNS Myelin

  • Chapter
Tight Junctions

Abstract

Myelin in the central nervous system (CNS) is composed of a complex multilamellar sheath wrapped around axons facilitating axonal conduction. Tight junctions (TJs) between plasma membrane layers of myelin were recognized over 40 years ago but only recently has the molecular composition been determined. CNS myelin TJs stain with anti-OSP/daudin-11 antibodies and are absent when the OSP/daudin-11 gene is disrupted. These TJs, along with PLP/DM20, serve an adhesive function maintaining myelin compaction. In addition to its structural role in mature myelin, OSP/claudin-11 associates with a member of the tetraspanin superfamily and β1 integrin, and regulates proliferation and migration of oligodendrocyte progenitor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bronstein JM, Micevych PE, Chen K. Oligodendrocyte-specific protein (OSP) is a major component of CNS myelin. J Neurosci Res 1997; 50(5):713–720.

    Article  PubMed  CAS  Google Scholar 

  2. Campagnoni AT. Molecular biology of myelin proteins from the central nervous System. J Neurochem 1988; 51:1–14.

    Article  PubMed  CAS  Google Scholar 

  3. Peters A. A radial component of central myelin sheaths. J Biophys Biochem Cytol 1961; 11:733–735.

    Article  PubMed  CAS  Google Scholar 

  4. Peters A. Further observations on the structure of myelin sheaths in the central nervous system. J Cell Biol 1964; 20:281–296.

    Article  PubMed  CAS  Google Scholar 

  5. Dermietzel R. Junctions in the central nervous system of the cat. II. A contribution to the tertiary structure of the axonal-glial junctions in the paranodal region of the node of Ranvier. Cell Tissue Res 1974; 148(4):577–586.

    PubMed  CAS  Google Scholar 

  6. Dermietzel R. Junctions in the central nervous system of the cat. I. Membrane fusion in central myelin. Cell Tissue Res 1974; 148(4):565–576.

    Article  PubMed  CAS  Google Scholar 

  7. Reale E, Luciano L, Spitznas M. Zonulae occludentes of the myelin lamellae in the nerve fibre layer of the retina and in the optic nerve of the rabbit: A demonstration by the freeze-fracture method. J Neurocytol 1975; 4(2):131–140.

    Article  PubMed  CAS  Google Scholar 

  8. Tabira T, Cullen MJ, Reier PJ et al. An experimental analysis of interlamellar tight junctions in amphibian and mammalian C.N.S. myelin. J Neurocytol 1978; 7(4):489–503.

    Article  PubMed  CAS  Google Scholar 

  9. Bronstein JM, Popper P, Micevych PE et al. Isolation and characterization of a novel oligodendrocyte-specific protein. Neurology 1996; 47(3):772–778.

    PubMed  CAS  Google Scholar 

  10. Roa BB, Dyck PJ, Marks HG et al. Dejerine-Sottas syndrome associated with point mutation in the peripheral myelin protein 22 (PMP22) gene. Nat Genet 1993; 5(3):269–273.

    Article  PubMed  CAS  Google Scholar 

  11. Bronstein JM, Chen K, Tiwari-Woodruff S et al. Developmental expression of OSP/claudin-11. J Neurosci Res 2000; 60(3):284–290.

    Article  PubMed  CAS  Google Scholar 

  12. Furuse M, Fujita K, Hiiragi T et al. Claudin-1 and-2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 1998; 141(7):1539–1550.

    Article  PubMed  CAS  Google Scholar 

  13. Morita K, Furuse M, Fujimoto K et al. Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci USA 1999; 96(2):511–516.

    Article  PubMed  CAS  Google Scholar 

  14. Morita K, Sasaki H, Fujimoto K et al. Claudin-11/OSP-based tight junctions of myelin sheaths in brain and sertoli cells in testis. J Cell Biol 1999; 145(3):579–588.

    Article  PubMed  CAS  Google Scholar 

  15. Gow A, Southwood CM, Li JS et al. CNS myelin and sertoli cell tight junction strands are absent in Osp/daudin-11 null mice. Cell 1999; 99(6):649–659.

    Article  PubMed  CAS  Google Scholar 

  16. Nave KA, Lai C, Bloom FE et al. Splice site selection in the proteolipid protein (PLP) gene transcript and primary structure of the DM-20 protein of central nervous system myelin. Proc Natl Acad Sci USA 1987; 84(16):5665–5669.

    Article  PubMed  CAS  Google Scholar 

  17. Sinoway MP, Kitagawa K, Timsit S et al. Proteolipid protein interactions in transfectants: Implications for myelin assembly. J Neurosci Res 1994; 37(5):551–562.

    Article  PubMed  CAS  Google Scholar 

  18. Garbern J, Cambi F, Shy M et al. The molecular pathogenesis of Pelizaeus-Merzbacher disease. Arch Neurol 1999; 56(10):1210–1214.

    Article  PubMed  CAS  Google Scholar 

  19. Boison D, Stoffel W. Disruption of the compacted myelin sheath of axons of the central nervous system in proteolipid protein-deficient mice. Proc Natl Acad Sci USA 1994; 91(24):11709–11713.

    Article  PubMed  CAS  Google Scholar 

  20. Klugmann M, Schwab MH, Puhlhofer A et al. Assembly of CNS myelin in the absence of proteolipid protein. Neuron 1997; 18(1):59–70.

    Article  PubMed  CAS  Google Scholar 

  21. Chow E, Mottahedeh J, Prins M. Disrupted compaction of CNS myelin in an OSP/Claudin-11 and PLP/DM20 double knockout mouse. Mol Cell Neurosci 2005; 29(3):405–413.

    Article  PubMed  CAS  Google Scholar 

  22. Jetten AM, Suter U. The peripheral myelin protein 22 and epithelial membrane protein family. Prog Nucleic Acid Res Mol Biol 2000; 64:97–129.

    Article  PubMed  CAS  Google Scholar 

  23. Zoidl G, Blass-Kampmann S, D’Urso D et al. Retroviral-mediated gene transfer of the peripheral myelin protein PMP22 in Schwann cells: Modulation of cell growth. EMBO J 1995; 14(6):1122–1128.

    PubMed  CAS  Google Scholar 

  24. Welcher AA, Suter U, De Leon M et al. A myelin protein is encoded by the homologue of a growth arrest-specific gene. Proc Nad Acad Sci USA 1991; 88:7195–7199.

    Article  CAS  Google Scholar 

  25. Tiwari-Woodruff SK, Buznikov AG, Vu TQ et al. OSP/daudin-11 forms a complex with a novel member of the tetraspanin super family and beta1 integrin and regulates proliferation and migration of oligodendrocytes. J Cell Biol 2001; 153(2):295–305.

    Article  PubMed  CAS  Google Scholar 

  26. Hellani A, Ji J, Mauduit C et al. Developmental and hormonal regulation of the expression of oligodendrocyte-specific protein/claudin 11 in mouse testis. Endocrinology 2000; 141(8):3012–3019.

    Article  PubMed  CAS  Google Scholar 

  27. Bronstein JM, Buznikov A, Liau LM et al. Is oligodendrocyte-specific protein (OSP) a proto-oncogene? Soc Neuroscience 1997; 43:42.

    Google Scholar 

  28. Hough CD, Sherman-Baust CA, Pizer ES et al. Large-scale serial analysis of gene expression reveals genes differentially expressed in ovarian cancer. Cancer Res 2000; 60(22):6281–6287.

    PubMed  CAS  Google Scholar 

  29. Kominsky SL, Argani P, Korz D et al. Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast. Oncogene 2003; 22(13):2021–2033.

    Article  PubMed  CAS  Google Scholar 

  30. Hoskins R, Hajnal AF, Harp SA et al. The C. elegans vulval induction gene lin-2 encodes a member of the MAGUK family of cell junction proteins. Development 1996; 122(1):97–111.

    PubMed  CAS  Google Scholar 

  31. Willott E, Balda MS, Fanning AS et al. The tight junction protein ZO-1 is homologous to the Drosophila discs-large tumor suppressor protein of septate junctions. Proc Natl Acad Sci USA 1993; 90(16):7834–7838.

    Article  PubMed  CAS  Google Scholar 

  32. Woods DF, Bryant PJ. ZO-1, DlgA and PSD-95/SAP90: Homologous proteins in tight, septate and synaptic cell junctions. Mech Dev 1993; 44(2–3):85–89.

    Article  PubMed  CAS  Google Scholar 

  33. Saitou M, Furuse M, Sasaki H et al. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 2000; 11(12):4131–4142.

    PubMed  CAS  Google Scholar 

  34. Itoh M, Furuse M, Morita K et al. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol 1999; 147(6):1351–1363.

    Article  PubMed  CAS  Google Scholar 

  35. Todd SC, Doctor VS, Levy S. Sequences and expression of six new members of the tetraspanin/TM4SF family. Biochim Biophys Acta 1998; 1399(1):101–104.

    PubMed  CAS  Google Scholar 

  36. Hemler ME, Mannion BA, Berditchevski F. Association of TM4SF proteins with integrins: Relevance to cancer. Biochim Biophys Acta 1996; 1287(2–3):67–71.

    PubMed  Google Scholar 

  37. Hemler ME. Specific tetraspanin functions. J Cell Biol 2001; 155(7):1103–1107.

    Article  PubMed  CAS  Google Scholar 

  38. Berditchevski F. Complexes of tetraspanins with integrins: More than meets the eye. J Cell Sci 2001; 114(Pt 23):4143–4151.

    PubMed  CAS  Google Scholar 

  39. Sugiura T, Berditchevski F. Function of alpha3beta1-tetraspanin protein complexes in tumor cell invasion. Evidence for the role of the complexes in production of matrix metalloproteinase 2 (MMP-2). J Cell Biol 1999; 146(6):1375–1389.

    Article  PubMed  CAS  Google Scholar 

  40. Berditchevski F, Odintsova E. Characterization of integrin-tetraspanin adhesion complexes. Role Of tetraspanins in integrin signaling. J Cell Biol 1999; 146(2):477–492.

    Article  PubMed  CAS  Google Scholar 

  41. Yauch RL, Kazarov AR, Desai B et al. Direct extracellular contact between integrin alpha(3)beta(1) and TM4SF protein CD151. J Biol Chem 2000; 275(13):9230–9238.

    Article  PubMed  CAS  Google Scholar 

  42. Zhang XA, Bontrager AL, Hemler ME. TM4SF proteins associate with activated PKC and Link PKC to specific beta1 integrins. J Biol Chem 2001; 26:26.

    Google Scholar 

  43. Berditchevski F, Tolias KF, Wong K et al. A novel link between integrins, transmembrane-4 super-family proteins (CD63 and CD81), and phosphatidylinositol 4-kinase. J Biol Chem 1997; 272(5):2595–2598.

    Article  PubMed  CAS  Google Scholar 

  44. Aplin AE, Howe AK, Juliano RL. Cell adhesion molecules, signal transduction and cell growth. Curr Opin Cell Biol 1999; 11(6):737–744.

    Article  PubMed  CAS  Google Scholar 

  45. Tiwari-Woodruff SK, Bronstein JM. OSP/daudin-11 associates with a voltage-sensitive K+ channel Kv3.1 in oligodendrocytes. Soc Neurosci 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Bronstein, J.M., Tiwari-Woodruff, S. (2006). Tight Junctions in CNS Myelin. In: Tight Junctions. Springer, Boston, MA. https://doi.org/10.1007/0-387-36673-3_14

Download citation

Publish with us

Policies and ethics