Skip to main content

Evolution of the Transporting Epithelium Phenotype

  • Chapter
Book cover Tight Junctions

Abstract

Metazoans and transporting epithelia (TE) kept a strict correlation throughout evolution because a cell lodged in an intimate tissue and surrounded by an extracellular space less than a micron thick would quickly perish were it not for the intense and highly selective exchange of substances across TE. The main cellular features of TE are tight junctions and apical/basolateral polarity involving close to a hundred molecular species exquisitely assembled. Even when at the dawn of metazoan, junctions and polarity must have been much simpler, it is hard to imagine how the molecules that are involved might have coincided in the same organism and within a few minutes. The present chapter attempts to solve this conundrum by discussing several clues.

  1. 1.

    Polarity, as well as certain molecules involved in its generation and maintenance, are even present in unicellulars.

  2. 2.

    Molecular species belonging to septate and occluding junctions can be found in unicellulars, albeit fulfilling different roles.3 Primitive metazoan might have had very simple epithelia of a transient nature, that helped to retain nutrients and signal molecules for short periods, then opened to allow the whole mass of cells to be flushed by the environment (“Thrifty sponge”).

  3. 4.

    Early metazoan might have compensated the inefficiency of their primitive epithelia with a large surface-to-volume ratio.

  4. 5.

    Finally, the possibility exists that cells might have proliferated without completely detaching from each other, and preserving the orientation of their mitotic spindle, thereby generating an ample overall polarized epithelium that would create an internal environment even before an internal body of somatic cells would grow inside (“the mare nostrum metazoan”).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cereijido M, Contreras RG, Shoshani L. Cell adhesion, polarity, and epithelia in the dawn of metazoan. Physiol Revs 2004;in press.

    Google Scholar 

  2. Oxender DL, Christensen HN. Transcellular concentration as a consequence of intracellular accumulation. J Biol Chem 1959; 234:2321–2324.

    PubMed  CAS  Google Scholar 

  3. Rotunno CA, Zylber EA, Cereijido M. Ion and water balance in the epithelium of the abdominal skin of the frog Leptodactylus ocellatus. J Membr Biol 1973; 13:217–232.

    Article  PubMed  CAS  Google Scholar 

  4. Zylber EA, Rotunno CA, Cereijido M. Ion and water balance in isolated epithelial cells of the abdominal skin of the frog Leptodactylus ocellatus. J Membr Biol 1973; 13:199–216.

    Article  PubMed  CAS  Google Scholar 

  5. Zylber EA, Rotunno CA, Cereijido M. Ionic fluxes in isolated epithelial cells of the abdominal skin of the frog Leptodactylus ocellatus. J Membr Biol 1975; 22:265–284.

    Article  PubMed  CAS  Google Scholar 

  6. Madin SH, Darby NB. As cataloged in the American Type Culture Collection Catalog of Strains. 1958.

    Google Scholar 

  7. Leighton J, Brada Z, Estes LW et al. Secretory activity and oncogenicity of a cell line (MDCK) derived from canine kidney. Science 1969; 163:472–473.

    Article  PubMed  CAS  Google Scholar 

  8. Cereijido M, Robbins ES, Dolan DF et al. Membrane properties of cell of renal origin (MDCK) cultured in monolayers on a permeable and translucent support. Proc Int Union Physiol 1977; 12:250a.

    Google Scholar 

  9. Cereijido M, Rotunno CA, Robbins ES et al. In vitro formation of cell layers with properties of epithelial membranes. Biophys J 1977; 17:22a.

    Google Scholar 

  10. Cereijido M, Robbins ES, Dolan WJ et al. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol 1978; 77:853–880.

    Article  PubMed  CAS  Google Scholar 

  11. Cereijido M, Rotunno CA, Robbins ES et al. Polarized epithelial membranes produced in vitro. In: Hoffman JF, ed. Membrane Transport Processes. New York: Raven Press, 1978:433–43.

    Google Scholar 

  12. Cereijido M, Rotunno CA. Introduction to the Study of Biological Membranes. New York, NY: Gordon and Breach, Science Publishers; 1971.

    Google Scholar 

  13. Misfeldt DS, Hamamoto ST, Pitelka DR. Transepithelial transport in cell culture. Proc Natl Acad Sci USA 1976; 73:1212–1216.

    Article  PubMed  CAS  Google Scholar 

  14. Fernandez-Castelo S, Bolivar JJ, Lopez-Vancell R et al. Ion transport in MDCK cells. In: Taub M, ed. Tissue Culture of Epithelial Cells. New York: Plenum Press, 1985:37–50.

    Google Scholar 

  15. Cereijido M, Ehrenfeld J, Meza I et al. Structural and functional membrane polarity in cultured monolayers of MDCK cells. J Membr Biol 1980; 52:147–159.

    Article  PubMed  CAS  Google Scholar 

  16. Gonzalez-Mariscal L, Chavez DR, Cereijido M. Effect of temperature on the occluding junctions of monolayers of epithelioid cells (MDCK). J Membr Biol 1984; 79:175–184.

    Article  PubMed  CAS  Google Scholar 

  17. Martinez-Palomo A, Meza I, Beaty G et al. Experimental modulation of occluding junctions in a cultured transporting epithelium. J Cell Biol 1980; 87:736–745.

    Article  PubMed  CAS  Google Scholar 

  18. Cereijido M, Stefani E, Palomo AM. Occluding junctions in a cultured transporting epithelium: structural and functional heterogeneity. J Membr Biol 1980; 53:19–32.

    Article  PubMed  CAS  Google Scholar 

  19. Cereijido M, Ehrenfeld J, Fernandez-Castelo S et al. Fluxes, junctions, and blisters in cultured monolayers of epithelioid cells (MDCK). Ann N Y Acad Sci 1981; 372:422–441.

    Article  PubMed  CAS  Google Scholar 

  20. Contreras RG, Avila G, Gutierrez C et al. Repolarization of Na+-K+ pumps during establishment of epithelial monolayers. Am J Physiol 1989; 257:C896–C905.

    PubMed  CAS  Google Scholar 

  21. Contreras RG, Shoshani L, Flores-Maldonado C et al. Relationship between Na(+),K(+)-ATPase and cell attachment. J Cell Sci 1999; 112 (Pt 23):4223–4232.

    PubMed  CAS  Google Scholar 

  22. Lisanti MP, Sargiacomo M, Graeve L et al. Polarized apical distribution of glycosyl-phosphatidylinositolanchored proteins in a renal epithelial cell line. Proc Natl Acad Sci USA 1988; 85:9557–9561.

    Article  PubMed  CAS  Google Scholar 

  23. Lisanti MP, Caras IW, Davitz MA et al. A glycophospholipid membrane anchor acts as an apical targeting signal in polarized epithelial cells. J Cell Biol 1989; 109:2145–2156.

    Article  PubMed  CAS  Google Scholar 

  24. Rodriguez-Boulan E, Paskiet KT, Sabatini DD. Assembly of enveloped viruses in Madin-Darby canine kidney cells: polarized budding from single attached cells and from clusters of cells in suspension. J Cell Biol 1983; 96:866–874.

    Article  PubMed  CAS  Google Scholar 

  25. Rodriguez-Boulan E, Paskiet KT, Salas PJ et al. Intracellular transport of influenza virus hemagglutinin to the apical surface of Madin-Darby canine kidney cells. J Cell Biol 1984; 98:308–319.

    Article  PubMed  CAS  Google Scholar 

  26. Rodriguez-Boulan E, Pendergast M. Polarized distribution of viral envelope proteins in the plasma membrane of infected epithelial cells. Cell 1980; 20:45–54.

    Article  PubMed  CAS  Google Scholar 

  27. Rodriguez-Boulan E, Sabatini DD. Asymmetric budding of viruses in epithelial monlayers: a model system for study of epithelial polarity. Proc Natl Acad Sci USA 1978; 75:5071–5075.

    Article  PubMed  CAS  Google Scholar 

  28. Rabito CA, Karish MV. Polarized amino acid transport by an epithelial cell line of renal origin (LLC-PK1). The apical systems. J Biol Chem 1983; 258:2543–2547.

    PubMed  CAS  Google Scholar 

  29. Rabito CA, Tchao R. [3H]ouabain binding during the monolayer organization and cell cycle in MDCK cells. Am J Physiol 1980; 238:C43–C48.

    PubMed  CAS  Google Scholar 

  30. Rabito CA, Tchao R, Valentich J et al. Effect of cell-substratum interaction on hemicyst formation by MDCK cells. In Vitro 1980; 16:461–468.

    PubMed  CAS  Google Scholar 

  31. Taub M. Tissue Cultured in Epithelial Cells. New York, NY: Plenum Press; 1985.

    Google Scholar 

  32. Taub M, Saier MH, Jr. Regulation of 22Na+ transport by calcium in an established kidney epithelial cell line. J Biol Chem 1979; 254:11440–11444.

    PubMed  CAS  Google Scholar 

  33. Taub M, UB Chuman L et al. Alterations in growth requirements of kidney epithelial cells in defined medium associated with malignant transformation. J Supramol Struct Cell Biochem 1981; 15:63–72.

    Article  PubMed  CAS  Google Scholar 

  34. Contreras RG, Gonzalez-Mariscal L, Balda MS et al. The role of calcium in the making of a transporting epithelium. NIPS 1992; 7:105–108.

    CAS  Google Scholar 

  35. Contreras RG, Ponce A, Bolivar JJ. Calcium and tight junctions. In: Cereijido M, ed. Tight Junctions. 1st ed. Boca Raton: CRC Press, 1992:139–49.

    Google Scholar 

  36. Gonzalez-Mariscal L, Chavez DR, Cereijido M. Tight junction formation in cultured epithelial cells (MDCK). J Membr Biol 1985; 86:113–125.

    Article  PubMed  CAS  Google Scholar 

  37. Gonzalez-Mariscal L, Contreras RG, Bolivar JJ et al. Role of calcium in tight junction formation between epithelial cells. Am J Physiol 1990; 259:C978–C986.

    PubMed  CAS  Google Scholar 

  38. Balda MS, Gonzalez-Mariscal L, Contreras RG et al. Assembly and sealing of tight junctions: possible participation of G-proteins, phospholipase C, protein kinase C and calmodulin. J Membr Biol 1991; 122:193–202.

    Article  PubMed  CAS  Google Scholar 

  39. Balda MS, Gonzalez-Mariscal L, Matter K et al. Assembly of the tight junction: the role of diacylglycerol. J Cell Biol 1993; 123:293–302.

    Article  PubMed  CAS  Google Scholar 

  40. Citi S. Protein kinase inhibitors prevent junction dissociation induced by low extracellular calcium in MDCK epithelial cells. J Cell Biol 1992; 117:169–178.

    Article  PubMed  CAS  Google Scholar 

  41. Meza I, Ibarra G, Sabanero M et al. Occluding junctions and cytoskeletal components in a cultured transporting epithelium. J Cell Biol 1980; 87:746–754.

    Article  PubMed  CAS  Google Scholar 

  42. Meza I, Sabanero M, Stefani E et al. Occluding junctions in MDCK cells: modulation of transepithelial permeability by the cytoskeleton. J Cell Biochem 1982; 18:407–421.

    Article  PubMed  CAS  Google Scholar 

  43. Griepp EB, Dolan WJ, Robbins ES et al. Participation of plasma membrane proteins in the formation of tight junctions by cultured epithelial cells. J Cell Biol 1983; 96:693–702.

    Article  PubMed  CAS  Google Scholar 

  44. Rindler MJ, Ivanov IE, Plesken H et al. Viral glycoproteins destined for apical or basolateral plasma membrane domains traverse the same Golgi apparatus during their intracellular transport in doubly infected Madin-Darby canine kidney cells. J Cell Biol 1984; 98:1304–1319.

    Article  PubMed  CAS  Google Scholar 

  45. Moreno J, Cruz-Vera LR, Garcia-Villegas MR et al. Polarized expression of Shaker channels in epithelial cells. J Membr Biol 2002; 190:175–187.

    Article  PubMed  CAS  Google Scholar 

  46. Ponce A, Cereijido M. Polarized distribution of cation channels in epithelial cells. Cell Physiol Biochem 1991; 1:13–23.

    CAS  Google Scholar 

  47. Ponce A, Bolivar JJ, Vega J et al. Synthesis of plasma membrane and potassium channels in epithelia. Cell Physiol Biochem 1991; 1:195–204.

    CAS  Google Scholar 

  48. Ponce A, Contreras RG, Cereijido M. Polarized distribution of chloride channels in epithelial cells. Cell Physiol Biochem 1991; 1:160–169.

    CAS  Google Scholar 

  49. Stefani E, Cereijido M. Electrical properties of cultured epithelioid cells (MDCK). J Membr Biol 1983; 73:177–184.

    Article  PubMed  CAS  Google Scholar 

  50. Talavera D, Ponce A, Fiorentino R et al. Expression of potassium channels in epithelial cells depends on calcium-activated cell-cell contacts. J Membr Biol 1995; 143:219–226.

    PubMed  CAS  Google Scholar 

  51. Gumbiner B, Simons K. A functional assay for proteins involved in establishing an epithelial occluding barrier: identification of a uvomorulin-like polypeptide. J Cell Biol 1986; 102:457–468.

    Article  PubMed  CAS  Google Scholar 

  52. Gumbiner B, Simons K. The role of uvomorulin in the formation of epithelial occluding junctions. Ciba Found Symp 1987; 125:168–186.

    PubMed  CAS  Google Scholar 

  53. Gumbiner B, Stevenson B, Grimaldi A. The role of the cell adhesion molecule uvomorulin in the formation and maintenance of the epithelial junctional complex. J Cell Biol 1988; 107:1575–1587.

    Article  PubMed  CAS  Google Scholar 

  54. Lever JE. Inducers of mammalian cell differentiation stimulate dome formation in a differentiated kidney epithelial cell line (MDCK). Proc Natl Acad Sci USA 1979; 76:1323–1327.

    Article  PubMed  CAS  Google Scholar 

  55. Matter K, Mellman I. Mechanisms of cell polarity: sorting and transport in epithelial cells. Curr Opin Cell Biol 1994; 6:545–554.

    Article  PubMed  CAS  Google Scholar 

  56. Contreras RG, Lazaro A, Bolivar JJ et al. A novel type of cell-cell cooperation between epithelial cells. J Membr Biol 1995; 145:305–310.

    PubMed  CAS  Google Scholar 

  57. Contreras RG, Shoshani L, Flores-Maldonado C et al. E-Cadherin and tight junctions between epithelial cells of different animal species. Pflugers Arch 2002; 444:467–475.

    Article  PubMed  CAS  Google Scholar 

  58. Gonzalez-Mariscal L, Chavez DR, Lazaro A et al. Establishment of tight junctions between cells from different animal species and different sealing capacities. J Membr Biol 1989; 107:43–56.

    Article  PubMed  CAS  Google Scholar 

  59. Cereijido M. Tight Junctions. In: Cereijido M, ed. Boca Raton: CRC Press, 1992.

    Google Scholar 

  60. Cereijido M. Tight Junctions. In: Cereijido M, ed. Tight Junctions. 2nd ed. Boca Raton: CRC Press, 2001.

    Google Scholar 

  61. Wang AZ, Wang JC, Ojakian GK et al. Determinants of apical membrane formation and distribution in multicellular epithelial MDCK cysts. Am J Physiol 1994; 267:C473–C481.

    PubMed  CAS  Google Scholar 

  62. Wodarz A. Establishing cell polarity in development. Nat Cell Biol 2002; 4:E39–E44.

    Article  PubMed  CAS  Google Scholar 

  63. Fleming TP, Ghassemifar MR, Sheth B. Junctional complexes in the early mammalian embryo. Semin Reprod Med 2000; 18:185–193.

    Article  PubMed  CAS  Google Scholar 

  64. Shoshani L, Contreras RG. Biogenesis of epithelial polarity and tight junctions. In: Cereijido M, ed. Tight Junctions. 2nd ed. Boca Raton: CRC Press, 2001:165–197.

    Google Scholar 

  65. Baas AF, Kuipers J, van der Wel NN et al. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell 2004; 116:457–466.

    Article  PubMed  CAS  Google Scholar 

  66. Mauchamp J, Chambard M, Gabrion J et al. Polarized multicellular structures designed for the in vitro study of thyroid cell function and polarization. Methods Enzymol 1983; 98:477–486.

    PubMed  CAS  Google Scholar 

  67. Koefoed-Johnsen V, Ussing HH. The nature of the frog skin potential. Acta Physiol Scand 1958; 42:298–308.

    Article  PubMed  CAS  Google Scholar 

  68. Cereijido M, Ehrenfeld J, Meza I et al. Structural and functional membrane polarity in cultured monolayers of MDCK cells. J Membr Biol 1980; 52:147–159.

    Article  PubMed  CAS  Google Scholar 

  69. Cereijido M, Shoshani L, Contreras RG. The polarized distribution of Na+, K+-ATPase and active transport across epithelia. J Membr Biol 2001; 184:299–304.

    Article  PubMed  CAS  Google Scholar 

  70. Louvard D. Apical membrane aminopeptidase appears at site of cell-cell contact in cultured kidney epithelial cells. Proc Natl Acad Sci USA 1980; 77:4132–4136.

    Article  PubMed  CAS  Google Scholar 

  71. Shoshani L Contreras RG, Roldan ML et al. The polarized expression of Na+,K+-ATPase in epithelia depends on the association between β-subunits located in neighboring cells. Mol Biol Cell 2005; 16:1071–1081.

    Article  PubMed  CAS  Google Scholar 

  72. Blanco G, Mercer RW. Isozymes of the Na-K-ATPase: Heterogeneity in structure, diversity in function. Am J Physiol 1998; 275:F633–F650.

    PubMed  CAS  Google Scholar 

  73. Pedersen PL, Carafoli E. Ion Motive ATPases I. Ubiquity, properties and significance to cell function. TIBS 1987; 12:146–150.

    CAS  Google Scholar 

  74. Pedersen PL, Carafoli E. Ion motive ATPases: Energy coupling and work output. TIBS 1987; 12:186–189.

    CAS  Google Scholar 

  75. Kirley TL. Determination of three disulfide bonds and one free sulfhydryl in the beta sub unit of (Na,K)-ATPase. J Biol Chem 1989; 264:7185–7192.

    PubMed  CAS  Google Scholar 

  76. Schmalzing G, Ruhl K, Gloor SM. Isoform-specific interactions of Na,K-ATPase subunits are mediated via extracellular domains and carbohydrates. Proc Natl Acad Sci USA 1997; 94:1136–1141.

    Article  PubMed  CAS  Google Scholar 

  77. Gatto C, McLoud SM, Kaplan JH. Heterologous expression of Na(+)-K(+)-ATPase in insect cells: intracellular distribution of pump subunits. Am J Physiol Cell Physiol 2001; 281:C982–C992.

    PubMed  CAS  Google Scholar 

  78. Laughery MD, Todd ML, Kaplan JH. Mutational analysis of alpha-beta sub unit interactions in the delivery of Na,K-ATPase heterodimers to the plasma membrane. J Biol Chem 2003; 278:34794–34803.

    Article  PubMed  CAS  Google Scholar 

  79. Swann AC, Daniel A, Albers RW et al. Interactions of lectins with (Na+ + K+)-ATPase of eel electric organ. Biochim Biophys Acta. 1975; 401:299–306.

    Article  PubMed  CAS  Google Scholar 

  80. Ochieng J, Warfield P, Green-Jarvis B et al. Galectin-3 regulates the adhesive interaction between breast carcinoma cells and elastin. J Cell Biochem 1999; 75:505–514.

    Article  PubMed  CAS  Google Scholar 

  81. Malik N, Canfield VA, Beckers MC et al. Identification of the mammalian Na,K-ATPase 3 subunit. J Biol Chem 1996; 271:22754–22758.

    Article  PubMed  CAS  Google Scholar 

  82. Martin-Vasallo P, Dackowski W, Emanuel JR et al. Identification of a putative isoform of the Na,K-ATPase beta subunit. Primary structure and tissue-specific expression. J Biol Chem 1989; 264:4613–4618.

    PubMed  CAS  Google Scholar 

  83. Schneider JW, Mercer RW, Gilmore-Hebert M et al. Tissue specificity, localization in brain, and cell-free translation of mRNA encoding the A3 isoform of Na+,K+-ATPase. Proc Natl Acad Sci USA 1988; 85:284–288.

    Article  PubMed  CAS  Google Scholar 

  84. Caplan MJ, Anderson HC, Palade GE et al. Intracellular sorting and polarized cell surface delivery of (Na+,K+)ATPase, an endogenous component of MDCK cell basolateral plasma membranes. Cell 1986; 46:623–631.

    Article  PubMed  CAS  Google Scholar 

  85. Caplan MJ, Palade GE, Jamieson JD. Newly synthesized Na,K-ATPase alpha-subunit has no cytosolic intermediate in MDCK cells. J Biol Chem 1986; 261:2860–2865.

    PubMed  CAS  Google Scholar 

  86. Gottardi CJ, Caplan MJ. Molecular requirements for the cell-surface expression of multisubunit ion-transporting ATPases. Identification of protein domains that participate in Na,K-ATPase and H,K-ATPase subunit assembly. J Biol Chem 1993; 268:14342–14347.

    PubMed  CAS  Google Scholar 

  87. Gottardi CJ, Caplan MJ. Delivery of Na+,K(+)-ATPase in polarized epithelial cells. Science 1993; 260:552–554.

    Article  PubMed  CAS  Google Scholar 

  88. Dunbar LA, Caplan MJ. The cell biology of ion pumps: sorting and regulation. Eur J Cell Biol 2000; 79:557–563.

    Article  PubMed  CAS  Google Scholar 

  89. Dunbar LA, Aronson P, Caplan MJ. A transmembrane segment determines the steady-state localization of an ion-transporting adenosine triphosphatase. J Cell Biol 2000; 148:769–778.

    Article  PubMed  CAS  Google Scholar 

  90. Kraemer D, Koob R, Friedrichs B et al. Two novel peripheral membrane proteins, pasin 1 and pasin 2, associated with Na+,K(+)-ATPase in various cells and tissues. J Cell Biol 1990; 111:2375–2383.

    Article  PubMed  CAS  Google Scholar 

  91. Kraemer DM, Strizek B, Meyer HE et al. Kidney Na+,K(+)-ATPase is associated with moesin. Eur J Cell Biol 2003; 82:87–92.

    Article  PubMed  CAS  Google Scholar 

  92. Devarajan P, Scaramuzzino DA, Morrow JS. Ankyrin binds to two distinct cytoplasmic domains of Na,K-ATPase alpha subunit. Proc Natl Acad Sci USA 1994; 91:2965–2969.

    Article  PubMed  CAS  Google Scholar 

  93. Zhang Z, Devarajan P, Dorfman AL et al. Structure of the ankyrin-binding domain of alpha-Na,K-ATPase. J Biol Chem 1998; 273:18681–18684.

    Article  PubMed  CAS  Google Scholar 

  94. Baumann O, Lautenschlager B, Takeyasu K. Immunolocalization of Na,K-ATPase in blowfly photoreceptor cells. Cell Tissue Res 1994; 275:225–234.

    Article  PubMed  CAS  Google Scholar 

  95. Baumann O. Biogenesis of surface domains in fly photoreceptor cells: fine-structural analysis of the plasma membrane and immunolocalization of Na+, K+ ATPase and alpha-spectrin during cell differentiation. J Comp Neurol 1997; 382:429–442.

    Article  PubMed  CAS  Google Scholar 

  96. Dubreuil RR, Maddux PB, Grushko TA et al. Segregation of two spectrin isoforms: polarized membrane-binding sites direct polarized membrane skeleton assembly. Mol Biol Cell 1997; 8:1933–1942.

    PubMed  CAS  Google Scholar 

  97. Dubreuil RR, Wang P, Dahl S et al. Drosophila beta spectrin functions independently of alpha spectrin to polarize the Na,K ATPase in epithelial cells. J Cell Biol 2000; 149:647–656.

    Article  PubMed  CAS  Google Scholar 

  98. Lee JK, Coyne RS, Dubreuil RR et al. Cell shape and interaction defects in alpha-spectrin mutants of Drosophila melanogaster. J Cell Biol 1993; 123:1797–1809.

    Article  PubMed  CAS  Google Scholar 

  99. Lee JK, Brandin E, Branton D et al. alpha-Spectrin is required for ovarian follicle monolayer integrity in Drosophila melanogaster. Development 1997; 124:353–362.

    PubMed  CAS  Google Scholar 

  100. Bok D, O’Day W, Rodriguez-Boulan E. Polarized budding of vesicular stomatitis and influenza virus from cultured human and bovine retinal pigment epithelium. Exp Eye Res. 1992; 55:853–860.

    Article  PubMed  CAS  Google Scholar 

  101. Caldwell RB, McLaughlin BJ. Redistribution of Na-K-ATPase in the dystrophic rat retinal pigment epithelium. J Neurocytol 1984; 13:895–910.

    Article  PubMed  CAS  Google Scholar 

  102. Gundersen D, Orlowski J, Rodriguez-Boulan E. Apical polarity of Na,K-ATPase in retinal pigment epithelium is linked to a reversal of the ankyrin-fodrin submembrane cytoskeleton. J Cell Biol 1991; 112:863–872.

    Article  PubMed  CAS  Google Scholar 

  103. Steinberg RH, Miller SS. Transport and membrane properties of the retinal pigment epithelium. In: Zinn KM, Marmor MF, eds. The Retinal Pigment Epithelium. Cambridge: Harvard University Press, 1979:205–225.

    Google Scholar 

  104. Bok D. Autoradiographic studies on the polarity of plasma membrane receptors in retinal pigment epithelial cells. In: J.G. Hollyfield, ed. The Structure of the Eye. New York: Elsevier Biomedical, 1982:245–256.

    Google Scholar 

  105. Rizzolo LJ, Zhou S. The distribution of Na+,K(+)-ATPase and 5A11 antigen in apical microvilli of the retinal pigment epithelium is unrelated to alpha-spectrin. J Cell Sci 1995; 108 (Pt 11):3623–3633.

    PubMed  CAS  Google Scholar 

  106. Axelsen KB, Palmgren MG. Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 1998; 46:84–101.

    Article  PubMed  CAS  Google Scholar 

  107. Vilsen B, Andersen JP, Petersen J et al. Occlusion of 22Na+ and 86Rb+ in membrane-bound and soluble protomeric alpha beta-units of Na,K-ATPase. J Biol Chem 1987; 262:10511–10517.

    PubMed  CAS  Google Scholar 

  108. Okamura H, Denawa M, Ohniwa R et al. P-type ATPase superfamily: evidence for critical roles for kingdom evolution. Ann NY Acad Sci 2003; 986:219–223.

    Article  PubMed  CAS  Google Scholar 

  109. Okamura H, Yasuhara JC, Fambrough DM et al. P-type ATPases in Caenorhabditis and Drosophila: implications for evolution of the P-type ATPase subunit families with special reference to the Na,K-ATPase and H,K-ATPase subgroup. J Membr Biol 2003; 191:13–24.

    Article  PubMed  CAS  Google Scholar 

  110. Krogh A. Osmotic Regulation in Aquatic Animals. Cambridge: University Cambridge Press; 1939.

    Google Scholar 

  111. Diamond JM. Transport mechanisms in the gallbladder. American Physiological Society Handbook 5. The Alimentary Canal 1968:2451.

    Google Scholar 

  112. Ahearn GA, Duerr JM, Zhuang Z et al. Ion transport processes of crustacean epithelial cells. Physiol Biochem Zool 1999; 72:1–18.

    Article  PubMed  CAS  Google Scholar 

  113. Cornell JC. Sodium and chloride transport in the isolated intestine of the earthworm, Lumbricus terrestris (L.). J Exp Biol 1982; 97:197–216.

    PubMed  CAS  Google Scholar 

  114. Hudson RL. Ion transport by the isolated mantle epithelium of the freshwater clam, Unio complanatus. Am J Physiol 1992; 263:R76–R83.

    PubMed  CAS  Google Scholar 

  115. Jungreis AM, Hoges TK, Kleinzeller A et al. Water Relations in Membrane Transport in Plants and Animals. New York, N.Y.: Academic Press; 2004.

    Google Scholar 

  116. Prusch R, Otter T. Annelid transepithelial ion transport. Comp Biochem Physiol 1977; 57A:87–92.

    Article  Google Scholar 

  117. Filshie BK, Flower NE. Junctional structures in hydra. J Cell Sci 1977; 23:151–172.

    PubMed  CAS  Google Scholar 

  118. McNutt NS. A thin-section and freeze-fracture study of microfilament-membrane attachments in choroid plexus and intestinal microvilli. J Cell Biol 1978; 79:774–787.

    Article  PubMed  CAS  Google Scholar 

  119. Staehelin LA. Structure and function of intercellular junctions. Int Rev Cytol 1974; 39:191–283.

    Article  PubMed  CAS  Google Scholar 

  120. Asano A, Asano K, Sasaki H et al. Claudins in Caenorhabditis elegans: their distribution and barrier function in the epithelium. Curr Biol 2003; 13:1042–1046.

    Article  PubMed  CAS  Google Scholar 

  121. Wu VM, Paul S, Schutle J et al. A cl-audin and specific isoforms of Na,K-ATPase are required for Drosophila epithelial tube-size control and septate junction organization. 43rd Annual Meeting of the American Society for Cell Biology, L308. 2003.

    Google Scholar 

  122. Matter K, Balda MS. Signalling to and from tight junctions. Nat Rev Mol Cell Biol 2003; 4:225–236.

    Article  PubMed  CAS  Google Scholar 

  123. Tepass U, Tanentzapf G, Ward R et al. Epithelial cell polarity and cell junctions in Drosophila. Annu Rev Genet 2001; 35:747–784.

    Article  PubMed  CAS  Google Scholar 

  124. Gierer A, Meinhardt H. A theory of biological pattern formation. Kybernetik 1972; 12:30–39.

    Article  PubMed  CAS  Google Scholar 

  125. Fei K, Yan L, Zhang J et al. Molecular and biological characterization of a zonula occludens-1 homologue in Hydra vulgaris, named HZO-1. Dev Genes Evol 2000; 210:611–616.

    Article  PubMed  CAS  Google Scholar 

  126. Wikramanayake AH, Hong M, Lee PN et al. An ancient role for nuclear beta-catenin in the evolution of axial polarity and germ layer segregation. Nature 2003; 426:446–450.

    Article  PubMed  CAS  Google Scholar 

  127. Adell T, Nefkens I, Muller WE. Polarity factor ‘Frizzled’ in the demosponge Suberites domuncula: identification, expression and localization of the receptor in the epithelium/pinacoderm(1). FEBS Lett 2003; 554:363–368.

    Article  PubMed  CAS  Google Scholar 

  128. Takeyasu K, Lemas V, Fambrough DM. Stability of Na(+)-K(+)-ATPase alpha-subunit isoforms in evolution. Am J Physiol 1990; 259:C619–C630.

    PubMed  CAS  Google Scholar 

  129. Takeyasu K, Okamura H, Yasuhara JC et al. P-type ATPase diversity and evolution: the origins of ouabain sensitivity and subunit assembly. Cell Mol Biol (Noisy-le-grand) 2001; 47:325–333.

    CAS  Google Scholar 

  130. Fambrough DM, Lemas MV, Hamrick M et al. Analysis of subunit assembly of the Na-K-ATPase. Am J Physiol 1994; 266:C579–C589.

    PubMed  CAS  Google Scholar 

  131. Lemas MV, Hamrick M, Takeyasu K et al. 26 amino acids of an extracellular domain of the Na,K-ATPase alpha-subunit are sufficient for assembly with the Na,K-ATPase beta-subunit. J Biol Chem 1994; 269:8255–8259.

    PubMed  CAS  Google Scholar 

  132. Wang SG, Farley RA. Valine 904, tyrosine 898, and cysteine 908 in Na,K-ATPase alpha subunits are important for assembly with beta subunits. J Biol Chem 1998; 273:29400–29405.

    Article  PubMed  CAS  Google Scholar 

  133. Kriebel PW, Barr VA, Parent CA. Adenylyl cyclase localization regulates streaming during chemotaxis. Cell 2003; 112:549–560.

    Article  PubMed  CAS  Google Scholar 

  134. Grimson MJ, Coates JC, Reynolds JP et al. Adherens junctions and beta-catenin-mediated cell signalling in a non-metazoan organism. Nature 2000; 408:727–731.

    Article  PubMed  CAS  Google Scholar 

  135. Perez-Moreno M, Jamora C, Fuchs E. Sticky business: orchestrating cellular signals at adherens junctions. Cell 2003; 112:535–548.

    Article  PubMed  CAS  Google Scholar 

  136. Korswagen HC, Herman MA, Clevers HC. Distinct beta-catenins mediate adhesion and signalling functions in C. elegans. Nature 2000; 406:527–532.

    Article  PubMed  CAS  Google Scholar 

  137. Kaplan DD, Meigs TE, Kelly P et al. Identification of a role for beta-catenin in the establishment of a bipolar mitotic spindle. J Biol Chem 2004; 279:10829–10832.

    Article  PubMed  CAS  Google Scholar 

  138. Simske JS, Koppen M, Sims P et al. The cell junction protein VAB-9 regulates adhesion and epidermal morphology in C. elegans. Nat Cell Biol 2003; 5:619–625.

    Article  PubMed  CAS  Google Scholar 

  139. Hua VB, Chang AB, Tchieu JH et al. Sequence and phylogenetic analyses of 4 TMS junctional proteins of animals: connexins, innexins, claudins and occludins. J Membr Biol 2003; 194:59–76.

    Article  PubMed  CAS  Google Scholar 

  140. Kollmar R, Nakamura SK, Kappler JA et al. Expression and phylogeny of claudins in vertebrate primordia. Proc Natl Acad Sci USA 2001; 98:10196–10201.

    Article  PubMed  CAS  Google Scholar 

  141. Uemura T. The cadherin superfamily at the synapse: more members, more missions. Cell. 1998; 93:1095–1098.

    Article  PubMed  CAS  Google Scholar 

  142. Nollet F, Kools P, van Roy F. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol 2000; 299:551–572.

    Article  PubMed  CAS  Google Scholar 

  143. Wu Q, Maniatis T. Large exons encoding multiple ectodomains are a characteristic feature of protocadherin genes. Proc Natl Acad Sci USA. 2000; 97:3124–3129.

    Article  PubMed  CAS  Google Scholar 

  144. Gallin WJ. Evolution of the “classical” cadherin family of cell adhesion molecules in vertebrates. J Mol Biol Evol 1998; 15:1099–1107.

    CAS  Google Scholar 

  145. Pouliot Y. Phylogenetic analysis of the cadherin superfamily. Bioessays. 1992; 14:743–748.

    Article  PubMed  CAS  Google Scholar 

  146. Oda H, Wada H, Tagawa K et al. A novel amphioxus cadherin that localizes to epithelial adherens junctions has an unusual domain organization with implications for chordate phylogeny. Evol Dev 2002; 4:426–434.

    Article  PubMed  CAS  Google Scholar 

  147. King N, Hittinger CT, Carroll SB. Evolution of key cell signaling and adhesion protein families predates animal origins. Science 2003; 301:361–363.

    Article  PubMed  CAS  Google Scholar 

  148. Lane NJ, Dallai R, Burighel P et al. Tight and gap junctions in the intestinal tract of tunicates (Urochordata): a freeze-fracture study. J Cell Sci 1986; 84:1–17.

    PubMed  CAS  Google Scholar 

  149. Sasakura Y, Shoguchi E, Takatori N et al. A genomewide survey of developmentally relevant genes in Ciona intestinalis. X. Genes for cell junctions and extracellular matrix. Dev Genes Evol 2003; 213:303–313.

    Article  PubMed  CAS  Google Scholar 

  150. Moroi S, Saitou M, Fujimoto K et al. Occludin is concentrated at tight junctions of mouse/rat but not human/guinea pig Sertoli cells in testes. Am J Physiol 1998; 274:C1708–C1717.

    PubMed  CAS  Google Scholar 

  151. Saitou M, Fujimoto K, Doi Y et al. Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol 1998; 141:397–408.

    Article  PubMed  CAS  Google Scholar 

  152. Conway Morris S. The fossil record and the early evolution of metazoa. Nature 1993; 361:219–225.

    Article  Google Scholar 

  153. Runnegar B. Collagen gene construction and evolution. J Mol Evol. 1985; 22:141–149.

    Article  PubMed  CAS  Google Scholar 

  154. Ax P. The Hierarchy of life, molecules and morphology in Phyligenetic Analisis. In: B.B.K.a J.H. Fernholm, ed. Amsterdam Excepta Medica, 1989:229–45.

    Google Scholar 

  155. Muller WE. Review: How was metazoan threshold crossed? The hypothetical Urmetazoa. Comp Biochem Physiol A Mol Integr Physiol 2001; 129:433–460.

    Article  PubMed  CAS  Google Scholar 

  156. Muller WE, Schroder HC, Skorokhod A et al. Contribution of sponge genes to unravel the genome of the hypothetical ancestor of Metazoa (Urmetazoa). Gene 2001; 276:161–173.

    Article  PubMed  CAS  Google Scholar 

  157. Schram FR. The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge University Press; 1991.

    Google Scholar 

  158. Wilimer P. Invertebrate Relationships Patterns in Animal Evolution XIII. Cambridge, MA.: Cambridge University Press; 1990.

    Google Scholar 

  159. Green RC. A clarification of the two types of invertebrate pleated septate junction. Tissue Cell 1981; 13:173–188.

    Article  PubMed  CAS  Google Scholar 

  160. Green RC, Bergquist PR. Cell membrane specializations in the Porifera. Biologie des Spongiaires. Paris: Colloques Internationaux du Centre National de la Recherche Scientific; 1978:153–8.

    Google Scholar 

  161. Green RC, Bergquist PR. Phylogenetic relationships within the invertebrata in relation to the structure of septate junctions and the development of/324 occluding’ junctional types. J Cell Sci 1982; 53:270–305.

    Google Scholar 

  162. Hammerton RW, Krzeminski KA, Mays RW et al. Mechanism for regulating cell surface distribution of Na+,K(+)-ATPase in polarized epithelial cells. Science. 1991; 254:847–850.

    Article  PubMed  CAS  Google Scholar 

  163. Gloor S, Antonicek H, Sweadner KJ et al. The adhesion molecule on glia (AMOG) is a homologue of the beta subunit of the Na,K-ATPase. J Cell Biol 1990; 110:165–174.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Cereijido, M., García-Villegas, M.d.R., Shoshani, L., Contreras, R.G. (2006). Evolution of the Transporting Epithelium Phenotype. In: Tight Junctions. Springer, Boston, MA. https://doi.org/10.1007/0-387-36673-3_1

Download citation

Publish with us

Policies and ethics