Skip to main content

A non-stationary paradigm for the dynamics of multivariate financial returns

  • Chapter
Dependence in Probability and Statistics

Part of the book series: Lecture Notes in Statistics ((LNS,volume 187))

8 Conclusions

In this paper a simple multivariate non-stationary paradigm for modeling and forecasting the distribution of returns on financial instruments is discussed.

Unlike most of the multivariate econometric models for financial returns, our approach supposes the volatility to be exogenous. The vectors of returns are assumed to be independent and to have a changing unconditional covariance structure. The methodological frame is that of non-parametric regression with fixed equidistant design points where the regression function is the evolving unconditional covariance. The vectors of standardized innovations have independent coordinates and asymmetric heavy tails and are modeled parametrically. The use of the non-stationary paradigm is exemplified on a trivariate sample of risk factors consisting of a foreign exchange rate Euro/Dollar (EU), an index, FTSE 100 index, and an interest rate, the 10 year US T-bond. The paradigm provides both a good description of the changes in the dynamic of the three risk factors and good multivariate distributional forecasts.

We believe that the careful parametric modeling of the extremal behavior of the standardized innovations makes our approach amenable for precise VaR calculations. Evaluating its behavior in these settings is, however, subject of further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barone-Adesi, G., Giannopoulos, K., Vosper, L.: VaR without correlations for portfolio of derivative securities. J. of Futures Markets, 19, 583–602, 1999.

    Article  Google Scholar 

  2. Campbell, J., Lo A., and Mackinlay, A. The Econometrics of Financial Markets. Princeton University Press, 1996.

    Google Scholar 

  3. Cai, J. A Markov model of unconditional variance in ARCH. J. Business and Economic Statist. 12, 309–316, 1994.

    Article  Google Scholar 

  4. Diebold, F.X. Modeling the persistence of the conditional variances: a comment. Econometric Reviews 5, 51–56, 1986.

    Google Scholar 

  5. Diebold, F.X. and Inoue, A. Long memory and regime switching. J. Econometrics 105, 131–159, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  6. Diebold, F.X., Gunther, T. and Tay, A. Evaluating Density Forecasts with Applications to Financial Risk Management. International Economic Review, 39, 863–883, 1998.

    Article  Google Scholar 

  7. Diebold, F.X., Hahn, J. and Tay, A. Multivariate Density Forecast Evaluation and Calibration in Financial Risk Management: High-Frequency Returns on Foreign Exchange. Review of Economics and Statistics, 81, 661–673, 1999.

    Article  Google Scholar 

  8. Drees, H. and Stărică, C. A simple non-stationary model for stock returns. Preprint, 2002. Available at http://www.math.chalmers.se/~starica/

    Google Scholar 

  9. Engle, R.F. and Sheppard, K. Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH. Preprint, 2002. Available at http://weber.ucsd.edu/~mbacci/engle/index_recent.html

    Google Scholar 

  10. Fan, J., Jiang, J., Zhang C. and Zhou Z. Time-dependent Diffusion Models for Term Structure Dynamics and the Stock Price Volatility. Statistica Sinica, 13, 965–992, 2003.

    MATH  MathSciNet  Google Scholar 

  11. Fan, J. and Yao, Q. Efficient Estimation of Conditional Variance Functions in Stochastic Regression. Biometrica, 85, 645–660, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  12. Gasser, T., Kneip, A., K’ohler, W. A flexible and fast method for automatic smoothing. J. Amer. Statist. Assoc., 86, 643–652, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  13. Gasser, T., Müller, H.-G., Mammitzsch, V. Kernels for nonparametric curve estimation. J. Roy. Statist. Soc. Ser. B, 47, 238–252, 1985.

    MATH  MathSciNet  Google Scholar 

  14. Gijbels, I., Pope, A. and Wand, M. P. Understanding exponential smoothing via kernel regression. J. R. Stat. Soc. Ser. B, 61, 39–50, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  15. Granger, C.W.J., Hyung, N. Occasional structural breaks and long-memory. Discussion paper 99-14, University of California, San Diego, 1999.

    Google Scholar 

  16. Granger, C., W., Teräsvirta, T. A simple non-linear time series model with misleading linear properties. Economics Letters 62, 161–165, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  17. Hidalgo, J. and Robinson, P.M. Testing for structural change in a long-memory environment. J. Econometrics 70, 159–174, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  18. Hsu, D.A., Miller, R., and Wichern, D. On the stable Paretian behavior of stock-market prices. J. Amer. Statist. Assoc. 69, 108–113, 1974.

    Article  MATH  Google Scholar 

  19. Kendall, M. and Stuart, A. The advanced theory of statistics. Charles Griffin, London, 1979.

    MATH  Google Scholar 

  20. Kesten, H. Random difference equations and renewal theory for products of random matrices. Acta Math. 131, 207–248, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  21. Lobato, I. N. and Savin, N. E. Real and Spurious Long-Memory Properties of Stock-Market Data. J. of Business & Economic Statist., 261–268, 1998.

    Google Scholar 

  22. Lamoureux, C.G. and Lastrapes, W.D. Persistence in variance, structural change and the GARCH model. J. Business and Economic Statist. 8, 225–234, 1990.

    Article  Google Scholar 

  23. Mikosch, T. and Stărică, C. Is it really long memory we see in financial returns? In: Extremes and Integrated Risk Management. Ed. P. Embrechts, Risk Books, 2002.

    Google Scholar 

  24. Mikosch, T. and Stărică, C. Non-stationarities in financial time series, the long range dependence and the IGARCH effects. Rev. of Economics and Statist., 86, 378–390, 2004.

    Article  Google Scholar 

  25. Müller, H., G. Nonparametric Regression Analysis of Longitudinal Data. Springer, Berlin, 1988.

    Google Scholar 

  26. Müller, H.-G. and Stadtmüller, U. Estimation of heteroscedasticity in regression analysis. Annals of Statististics 15, 610–625, 1987.

    MATH  Google Scholar 

  27. Nagahara, Y., and Kitagawa, G. A Non-Gaussian Stochastic Volatility Model. J. of Computational Finance, 2, 33–47, 1999.

    Google Scholar 

  28. Nelson, D.B. Stationarity and persistence in the GARCH(1, 1) model. Econometric Theory 6, 318–334, 1990.

    Article  MathSciNet  Google Scholar 

  29. Officer, R. A time series examination of the market factor of the New York Stock Exchange. Ph.D. Dissertation. University of Chicago, 1971.

    Google Scholar 

  30. Rodríguez-Poo, J. M. and Linton, O. Nonparametric factor analysis of residual time series. Test, 10, 161–182, 2001.

    MATH  MathSciNet  Google Scholar 

  31. Rice, J. Boundary modification for kernel regression. Comm. Statist. A-Theory Methods 13, 893–900, 1984.

    MATH  MathSciNet  Google Scholar 

  32. RiskMetrics. Technical Document, 1995. Available at http://www.riskmetrics.com/techdoc.html.

    Google Scholar 

  33. Shorack, G. R. and Wellner J. A. Empirical processes with applications to statistics. John Wiley & Sons, New York, 1996.

    Google Scholar 

  34. Simonato, J., G. Estimation of GARCH processes in the presence of structural change. Economic Letters 40, 155–158, 1992.

    Article  MATH  Google Scholar 

  35. Stărică, C. Is Garch(1,1) as good a model as the accolades of the Noble prize would imply?, Preprint 2003. Available at http://www.math.chalmers.se/~starica

    Google Scholar 

  36. Stărică, C. and Granger, C. Non-stationarities in stock returns. Rev. of Economics and Statist. 87, 2005. Available at http://www.math.chalmers.se/~starica

    Google Scholar 

  37. Stărică, C., Herzel, S., and Nord, T. Why does the Garch(1,1) model fail to produce reasonable longer-horizon forecasts? Preprint, 2005. Available at http://www.math.chalmers.se/~starica

    Google Scholar 

  38. Stock, J. and Watson, M. Evidence on structural instability in macroeconomic time series relations. J. Business and Economic Statist., 14, 11–30, 1996.

    Article  Google Scholar 

  39. Wand, M.P. and Jones, M.C. Kernel Smoothing. Chapman and Hall, London, 1995.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Herzel, S., Stărică, C., Tütüncüc, R. (2006). A non-stationary paradigm for the dynamics of multivariate financial returns. In: Bertail, P., Soulier, P., Doukhan, P. (eds) Dependence in Probability and Statistics. Lecture Notes in Statistics, vol 187. Springer, New York, NY . https://doi.org/10.1007/0-387-36062-X_18

Download citation

Publish with us

Policies and ethics