Skip to main content

Regeneration-based statistics for Harris recurrent Markov chains

  • Chapter
Dependence in Probability and Statistics

Part of the book series: Lecture Notes in Statistics ((LNS,volume 187))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramovitz L., Singh K. (1985). Edgeworth Corrected Pivotal Statistics and the Bootstrap, Ann. Stat., 13, 116–132.

    Google Scholar 

  2. Asmussen, S. (1987). Applied Probabilities and Queues. Wiley.

    Google Scholar 

  3. Asmussen, S. (1998). Extremal Value Theory for Queues Via Cycle Maxima. Extremes, 1, No 2, 137–168.

    Article  MathSciNet  MATH  Google Scholar 

  4. Athreya, K.B., Atuncar, G.S. (1998). Kernel estimation for real-valued Markov chains. Sankhya, 60, series A, No 1, 1–17.

    MathSciNet  MATH  Google Scholar 

  5. Athreya, K.B., Fuh, C.D. (1989). Bootstrapping Markov chains: countable case. Tech. Rep. B-89-7, Institute of Statistical Science, Academia Sinica, Taipei, Taiwan, ROC.

    Google Scholar 

  6. Athreya, K.B., Ney, P. (1978). A new approach to the limit theory of recurrent Markov chains. Trans. Amer. Math. Soc., 245, 493–501.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertail, P. (1997). Second order properties of an extrapolated bootstrap without replacement: the i.i.d. and the strong mixing cases, Bernoulli, 3, 149–179.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bertail, P., Clémençon, S. (2004a). Edgeworth expansions for suitably normalized sample mean statistics of atomic Markov chains. Prob. Th. Rel. Fields, 130, 388–414.

    Article  MATH  Google Scholar 

  9. Bertail, P., Clémençon, S. (2004b). Note on the regeneration-based bootstrap for atomic Markov chains. To appear in Test.

    Google Scholar 

  10. Bertail, P., Clémençon, S. (2004c). Regenerative Block Bootstrap for Markov Chains. To appear in Bernoulli.

    Google Scholar 

  11. Bertail, P., Clémençon, S. (2004d). Approximate Regenerative Block-Bootstrap for Markov Chains: second-order properties. In Compstat 2004 Proc. Physica Verlag.

    Google Scholar 

  12. Bertail, P., Politis, D. (2001). Extrapolation of subsampling distribution estimators in the i.i.d. and strong-mixing cases, Can. J. Stat., 29, 667–680.

    MathSciNet  MATH  Google Scholar 

  13. Bickel, P.J., Kwon, J. (2001). Inference for Semiparametric Models: Some Current Frontiers. Stat. Sin., 11, No. 4, 863–960.

    MathSciNet  MATH  Google Scholar 

  14. Bingham N.H., Goldie G.M., Teugels J.L. (1989): Regular Variation, Cambridge University Press.

    Google Scholar 

  15. Birgé, L. (1983). Approximation dans les espaces métriques et théorie de l’estimation. Z. Wahr. verw. Gebiete, 65, 181–237.

    Article  MATH  Google Scholar 

  16. Bolthausen, E. (1980). The Berry-Esseen Theorem for strongly mixing Harris recurrent Markov Chains. Z. Wahr. Verw. Gebiete, 54, 59–73.

    Article  MathSciNet  MATH  Google Scholar 

  17. Bolthausen, E. (1982). The Berry-Esseen Theorem for strongly mixing Harris recurrent Markov Chains. Z. Wahr. Verw. Gebiete, 60, 283–289.

    Article  MathSciNet  MATH  Google Scholar 

  18. Borovkova, S., Burton R., Dehling H. (1999). Consistency of the Takens estimator for the correlation dimension. Ann. Appl. Prob., 9, No. 2, 376–390.

    Article  MathSciNet  MATH  Google Scholar 

  19. Brockwell, P.J., Resnick, S.J., Tweedie, R.L. (1982). Storage processes with general release rules and additive inputs. Adv. Appl. Probab., 14, 392–433.

    Article  MathSciNet  MATH  Google Scholar 

  20. Browne, S., Sigman, K. (1992). Work-modulated queues with applications to storage processes. J. Appl. Probab., 29, 699–712.

    Article  MathSciNet  MATH  Google Scholar 

  21. Bühlmann, P. (1997). Sieve Bootstrap for time series. Bernoulli, 3, 123–148.

    Article  MathSciNet  MATH  Google Scholar 

  22. Bühlmann, P. (2002). Bootstrap for time series. Stat. Sci., 17, 52–72.

    Article  MATH  Google Scholar 

  23. Callaert, H., Veraverbeke, N. (1981). The order of the normal approximation for a Studentized statistic. Ann. Stat., 9, 194–200.

    MathSciNet  MATH  Google Scholar 

  24. Carlstein, E. (1986). The use of subseries values for estimating the variance of a general statistic from a stationary sequence. Ann. Statist., 14, 1171–1179.

    MathSciNet  MATH  Google Scholar 

  25. Clémençon, S. (2000). Adaptive estimation of the transition density of a regular Markov chain. Math. Meth. Stat., 9, No. 4, 323–357.

    MATH  Google Scholar 

  26. Clémençon, S. (2001). Moment and probability inequalities for sums of bounded additive functionals of regular Markov chains via the Nummelin splitting technique. Stat. Prob. Letters, 55, 227–238.

    Article  MATH  Google Scholar 

  27. Datta, S., McCormick W.P. (1993). Regeneration-based bootstrap for Markov chains. Can. J. Statist., 21, No.2, 181–193.

    MathSciNet  MATH  Google Scholar 

  28. Deheuvels, P. Häusler, E., Mason, D.M. (1988). Almost sure convergence of the Hill estimator. Math. Proc. Camb. Philos. Soc., 104, 371–381.

    Article  MATH  Google Scholar 

  29. Douc, R., Fort, G., Moulines, E., Soulier, P. (2004). Practical drift conditions for subgeometric rates of convergence. Ann. Appl. Prob., 14, No 3, 1353–1377.

    Article  MathSciNet  MATH  Google Scholar 

  30. Doukhan, P. (1994). Mixing: Properties and Examples. Lecture Notes in Statist., 85. Springer, New York.

    MATH  Google Scholar 

  31. Doukhan, P., Ghindès, M. (1983). Estimation de la transition de probabilité d’une chaîne de Markov Doeblin récurrente. Stochastic Process. Appl., 15, 271–293.

    Article  MathSciNet  MATH  Google Scholar 

  32. Embrechts, P., Klüppelberg, C., Mikosch, T. (2001). Modelling Extremal Events. Springer-Verlag.

    Google Scholar 

  33. Feller, W. (1968). An Introduction to Probability Theory and its Applications: vol. I. John Wiley & Sons, NY, 2nd edition.

    MATH  Google Scholar 

  34. Feller, W. (1971). An Introduction to Probability Theory and its Applications: vol. II. John Wiley & Sons, NY, 3rd edition

    MATH  Google Scholar 

  35. Franke, J., Kreiss, J. P., Mammen, E. (2002). Bootstrap of kernel smoothing in nonlinear time series. Bernoulli, 8, 1–37.

    MathSciNet  MATH  Google Scholar 

  36. Glynn, W.P., Zeevi, A. (2000). Estimating Tail Probabilities in Queues via Extremal Statistics. In Analysis of Communication Networks: Call Centres, Traffic, and Performance [D.R. McDonald and S.R. Turner, eds.] AMS, Providence, Rhode Island, 135–158.

    Google Scholar 

  37. Glynn, W.P., Whitt, W. (1995). Heavy-Traffic Extreme-Value Limits for Queues. Op. Res. Lett. 18, 107–111.

    Article  MathSciNet  MATH  Google Scholar 

  38. Goldie, C.M. (1991). Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Prob., 1, 126–166.

    MathSciNet  MATH  Google Scholar 

  39. Götze, F., Hipp, C. (1983). Asymptotic expansions for sums of weakly dependent random vectors. Zeit. Wahrschein. verw. Geb., 64, 211–239.

    Article  MATH  Google Scholar 

  40. Götze, F., Künsch, H.R. (1996). Second order correctness of the blockwise bootstrap for stationary observations. Ann. Statist., 24, 1914–1933.

    Article  MathSciNet  MATH  Google Scholar 

  41. Hall P. (1983). Inverting an Edgeworth Expansion. Ann. Statist., 11, 569–576.

    MathSciNet  MATH  Google Scholar 

  42. Hall, P. (1985). Resampling a coverage pattern. Stoch. Process. Applic., 20, 231–246.

    Article  MATH  Google Scholar 

  43. Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer.

    Google Scholar 

  44. Harrison, J.M., Resnick, S.J. (1976). The stationary distribution and first exit probabilities of a storage process with general release rule. Math. Oper. Res., 1, 347–358.

    Article  MathSciNet  MATH  Google Scholar 

  45. Helmers, R (1991). On the Edgeworth expansion and the bootstrap approximation for a studentized statistics. Ann. Statist., 19, 470–484.

    MathSciNet  MATH  Google Scholar 

  46. Hoeffding, W. (1948). A class of statistics with asymptotically normal distributions. Ann. Math. Stat., 19, 293–325.

    MathSciNet  MATH  Google Scholar 

  47. Jain, J., Jamison, B. (1967). Contributions to Doeblin’s theory of Markov processes. Z. Wahrsch. Verw. Geb., 8, 19–40.

    Article  MathSciNet  MATH  Google Scholar 

  48. Kalashnikov, V.V. (1978). The Qualitative Analysis of the Behavior of Complex Systems by the Method of Test Functions. Nauka, Moscow.

    MATH  Google Scholar 

  49. Karlsen, H.A., Tjøstheim, D. (2001). Nonparametric estimation in null recurrent time series. Ann. Statist., 29(2), 372–416.

    Article  MathSciNet  MATH  Google Scholar 

  50. Künsch, H.R. (1984). Infinitesimal robustness for autoregressive processes. Ann. Statist., 12, 843–863.

    MathSciNet  MATH  Google Scholar 

  51. Künsch, H.R. (1989). The jackknife and the bootstrap for general stationary observations. Ann. Statist., 17, 1217–1241.

    MathSciNet  MATH  Google Scholar 

  52. Lahiri, S.N. (2003). Resampling methods for dependent Data, Springer.

    Google Scholar 

  53. Leadbetter, M.R., Rootzén, H. (1988). Extremal Theory for Stochastic Processes. Ann. Prob., 16, No. 2, 431–478.

    MATH  Google Scholar 

  54. Liu R., Singh K. (1992). Moving blocks jackknife and bootstrap capture weak dependence. In Exploring The Limits of The Bootstrap. Ed. Le Page R. and Billard L., John Wiley, NY.

    Google Scholar 

  55. Malinovskii, V. K. (1985). On some asymptotic relations and identities for Harris recurrent Markov Chains. In Statistics and Control of Stochastic Processes, 317–336.

    Google Scholar 

  56. Malinovskii, V. K. (1987). Limit theorems for Harris Markov chains I. Theory Prob. Appl., 31, 269–285.

    Article  Google Scholar 

  57. Malinovskii, V. K. (1989). Limit theorems for Harris Markov chains II. Theory Prob. Appl., 34, 252–265.

    Article  MathSciNet  Google Scholar 

  58. Martin, R.D., Yohai, V.J. (1986). Influence functionals for time series. Ann. Stat., 14, 781–818.

    MathSciNet  MATH  Google Scholar 

  59. Meyn, S.P., Tweedie, R.L., (1996). Markov chains and stochastic stability. Springer.

    Google Scholar 

  60. Müller, U.U., Schick, A., Wefelmeyer, W., (2001). Improved estimators for constrained Markov chain models. Stat. Prob. Lett., 54, 427–435.

    Article  MATH  Google Scholar 

  61. Nummelin, E. (1978). A splitting technique for Harris recurrent chains. Z. Wahrsch. Verw. Gebiete, 43, 309–318.

    Article  MathSciNet  MATH  Google Scholar 

  62. Nummelin, E. (1984). General irreducible Markov chains and non negative operators. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  63. Paparoditis, E. and Politis, D.N. (2002). The local bootstrap for Markov processes. J. Statist. Plan. Infer., 108, 301–328.

    Article  MathSciNet  MATH  Google Scholar 

  64. Politis, D.N., Romano, J.P. (1992). A General Resampling Scheme for Triangular Arrays of alpha-mixing Random Variables with Application to the Problem of Spectral Density Estimation, Ann. Statist., 20, 1985–2007.

    MathSciNet  MATH  Google Scholar 

  65. Politis, D.N., Romano, J.P. (1994). Large sample confidence regions based on subsamples under minimal assumptions. Ann. Statist., 22, 2031–2050.

    MathSciNet  MATH  Google Scholar 

  66. Politis, D.N., Romano, J.P., Wolf, T. (2000). Subsampling. Springer Series in Statistics, Springer, NY.

    Google Scholar 

  67. Politis, D.N. (2003). The impact of bootstrap methods on time series analysis. Statistical Science, 18, No. 2, 219–230.

    Article  MathSciNet  Google Scholar 

  68. Prakasa Rao, B.L.S. (1983). Nonparametric Functional Estimation. Academic Press, NY.

    MATH  Google Scholar 

  69. Rachev, S. T., Rüschendorf, L. (1998). Mass Transportation Problems. Vol. I and II. Springer.

    Google Scholar 

  70. Resnick, S. (1987). Extreme Values, Regular Variation and Point Processes. Springer, NY.

    MATH  Google Scholar 

  71. Resnick, S. (1997). Heavy Tail Modeling And Teletraffic Data. Ann. Stat., 25, 1805–1869.

    Article  MathSciNet  MATH  Google Scholar 

  72. Resnick, S., Starica, C. (1995). Consistency of Hill estimator for dependent data. J. Appl. Prob., 32, 139–167.

    Article  MathSciNet  MATH  Google Scholar 

  73. Revuz, D (1984). Markov chains. North-Holland, 2nd edition.

    Google Scholar 

  74. Roberts, G.O., Rosenthal, J.S. (1996). Quantitative bounds for convergence rates of continuous time Markov processes. Electr. Journ. Prob., 9, 1–21.

    MathSciNet  Google Scholar 

  75. Rosenblatt, M. (1970). Density estimates and Markov sequences. In Nonparametric Techniques in Statistical Inference, Ed. M. Puri, 199–210.

    Google Scholar 

  76. Rootzén, H. (1988). Maxima and exceedances of stationary Markov chains. Adv. Appl. Prob., 20, 371–390.

    Article  MATH  Google Scholar 

  77. Roussas, G. (1969). Nonparametric Estimation in Markov Processes. Ann. Inst. Stat. Math., 73–87.

    Google Scholar 

  78. Roussas, G. (1991a). Estimation of transition distribution function and its quantiles in Markov Processes. In Nonparametric Functional Estimation and Related Topics, Ed. G. Roussas, 443–462.

    Google Scholar 

  79. Roussas, G. (1991b). Recursive estimation of the transition distribution function of a Markov Process. Stat. Probab. Letters, 11, 435–447.

    Article  MathSciNet  MATH  Google Scholar 

  80. Serfling J. (1981). Approximation Theorems of Mathematical Statistics, Wiley, NY.

    Google Scholar 

  81. Serfling, R., Zuo, Y., (2000). General Notions of Statistical Depth Function (in Data Depth). Ann. Stat., 28, No. 2., 461–482.

    Article  MathSciNet  MATH  Google Scholar 

  82. Smith, W. L. (1955). Regenerative stochastic processes. Proc. Royal Stat. Soc., A, 232, 6–31.

    Article  MATH  Google Scholar 

  83. Tjøstheim, D. (1990). Non Linear Time series, Adv. Appl. Prob., 22, 587–611.

    Article  MATH  Google Scholar 

  84. Thorisson, H. (2000). Coupling, Stationarity and Regeneration. Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bertail, P., Clémençon, S. (2006). Regeneration-based statistics for Harris recurrent Markov chains. In: Bertail, P., Soulier, P., Doukhan, P. (eds) Dependence in Probability and Statistics. Lecture Notes in Statistics, vol 187. Springer, New York, NY . https://doi.org/10.1007/0-387-36062-X_1

Download citation

Publish with us

Policies and ethics