Skip to main content

Does Ventilator-induced Lung Injury Initiate Non-pulmonary Organ Dysfunction?

  • Conference paper
Intensive Care Medicine
  • 880 Accesses

Abstract

The mortality rate and costs associated with acute respiratory distress syndrome (ARDS), the most severe form of acute lung injury (ALI), remain excessively high [1]. Although the most obvious clinical abnormalities in ALI/ARDS are referable to the lung, the most common cause of death is not due to hypoxia but to multiple organ dysfunction syndrome (MODS) [2]. MODS is often irreversible with a mortality rate higher than 60%. We currently lack a specific treatment of the syndrome and modern technology, such as hemodialysis, only allows temporary substitution of organ function, providing a bridge to recovery. Better understanding of the pathophysiology leading to the development of MODS in mechanically ventilated patients should help in the development of approaches to interrupt the cascades leading to MODS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vincent JL, Sakr Y, Ranieri VM (2003) Epidemiology and outcome of acute respiratory failure in intensive care unit patients. Crit Care Med 31:S296–S299

    Article  PubMed  CAS  Google Scholar 

  2. Esteban A, Anzueto A, Frutos F, et al (2002) Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA 287:345–355

    Article  PubMed  Google Scholar 

  3. Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99:944–952

    PubMed  CAS  Google Scholar 

  4. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  5. Ranieri VM, Giunta F, Suter PM, Slutsky AS (2000) Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA 284:43–44

    Article  PubMed  CAS  Google Scholar 

  6. dos Santos CC, Slutsky AS (2000) Invited review: mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol 89:1645–1655

    PubMed  Google Scholar 

  7. Chiumello D, Pristine G, Slutsky AS (1999) Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome. Am J Respir Crit Care Med 160:109–116

    PubMed  CAS  Google Scholar 

  8. Slutsky AS, Tremblay LN (1998) Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 157:1721–1725

    PubMed  CAS  Google Scholar 

  9. Murphy DB, Cregg N, Tremblay L, et al (2000) Adverse ventilatory strategy causes pulmonary-to-systemic translocation of endotoxin. Am J Respir Crit Care Med 162:27–33

    PubMed  CAS  Google Scholar 

  10. Lin CY, Zhang H, Cheng KC, Slutsky AS (2003) Mechanical ventilation may increase susceptibility to the development of bacteremia. Crit Care Med 31:1429–1434

    Article  PubMed  Google Scholar 

  11. Laupland KB, Kirkpatrick AW, Church DL, Ross T, Gregson DB (2004) Intensive-care-unit-acquired bloodstream infections in a regional critically ill population. J Hosp Infect 58:137–145

    Article  PubMed  CAS  Google Scholar 

  12. Ranieri VM, Suter PM, Tortorella C, et al (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282:54–61

    Article  PubMed  CAS  Google Scholar 

  13. Parsey MV, Tuder RM, Abraham E (1998) Neutrophils are major contributors to intraparenchymal lung IL-1 beta expression after hemorrhage and endotoxemia. J Immunol 160:1007–1013

    PubMed  CAS  Google Scholar 

  14. Steinberg KP, Milberg JA, Martin TR, Maunder RJ, Cockrill BA, Hudson LD (1994) Evolution of bronchoalveolar cell populations in the adult respiratory distress syndrome. Am J Respir Crit Care Med 150:113–122

    PubMed  CAS  Google Scholar 

  15. Hotchkiss RS, Schmieg RE, Jr., Swanson PE, et al (2000) Rapid onset of intestinal epithelial and lymphocyte apoptotic cell death in patients with trauma and shock. Crit Care Med 28:3207–3217

    Article  PubMed  CAS  Google Scholar 

  16. Papathanassoglou ED, Moynihan JA, Ackerman MH (2000) Does programmed cell death (apoptosis) play a role in the development of multiple organ dysfunction in critically ill patients? a review and a theoretical framework. Crit Care Med 28:537–549

    Article  PubMed  CAS  Google Scholar 

  17. Matute-Bello G, Liles WC, Steinberg KP, et al (1999) Soluble Fas ligand induces epithelial cell apoptosis in humans with acute lung injury (ARDS). J Immunol 163:2217–2225

    PubMed  CAS  Google Scholar 

  18. Matute-Bello G, Liles WC, Frevert CW, et al (2001) Recombinant human Fas ligand induces alveolar epithelial cell apoptosis and lung injury in rabbits. Am J Physiol Lung Cell Mol Physiol 281:L328–L335

    PubMed  CAS  Google Scholar 

  19. Albertine KH, Soulier MF, Wang Z, et al (2002) Fas and fas ligand are up-regulated in pulmonary edema fluid and lung tissue of patients with acute lung injury and the acute respiratory distress syndrome. Am J Pathol 161:1783–1796

    PubMed  CAS  Google Scholar 

  20. Imai Y, Parodo J, Kajikawa O, et al (2003) Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA 289:2104–2112

    Article  PubMed  Google Scholar 

  21. Pinsky MR (2002) Recent advances in the clinical application of heart-lung interactions. Curr Opin Crit Care 8:26–31

    Article  PubMed  Google Scholar 

  22. Hering R, Peters D, Zinserling J, Wrigge H, von Spiegel T, Putensen C (2002) Effects of spontaneous breathing during airway pressure release ventilation on renal perfusion and function in patients with acute lung injury. Intensive Care Med 28:1426–1433

    Article  PubMed  Google Scholar 

  23. Kiefer P, Nunes S, Kosonen P, Takala J (2000) Effect of positive end-expiratory pressure on splanchnic perfusion in acute lung injury. Intensive Care Med 26:376–383

    Article  PubMed  CAS  Google Scholar 

  24. Lehtipalo S, Biber B, Frojse R, Arnerlov C, Johansson G, Winso O (2003) Effects of dopexamine and positive end-expiratory pressure on intestinal blood flow and oxygenation: the perfusion pressure perspective. Chest 124:688–698

    Article  PubMed  CAS  Google Scholar 

  25. Aneman A, Eisenhofer G, Fandriks L, et al (1999) Splanchnic circulation and regional sympathetic outflow during peroperative PEEP ventilation in humans. Br J Anaesth 82:838–842

    PubMed  CAS  Google Scholar 

  26. Fournell A, Scheeren TW, Schwarte LA (1998) PEEP decreases oxygenation of the intestinal mucosa despite normalization of cardiac output. Adv Exp Med Biol 454:435–440

    PubMed  CAS  Google Scholar 

  27. Kotzampassi K, Paramythiotis D, Eleftheriadis E (2000) Deterioration of visceral perfusion caused by intra-abdominal hypertension in pigs ventilated with positive end-expiratory pressure. Surg Today 30:987–992

    Article  PubMed  CAS  Google Scholar 

  28. Love R, Choe E, Lippton H, Flint L, Steinberg S (1995) Positive end-expiratory pressure decreases mesenteric blood flow despite normalization of cardiac output. J Trauma 39:195–199

    Article  PubMed  CAS  Google Scholar 

  29. Ranieri VM, Mascia L, Fiore T, Bruno F, Brienza A, Giuliani R (1995) Cardiorespiratory effects of positive end-expiratory pressure during progressive tidal volume reduction (permissive hypercapnia) in patients with acute respiratory distress syndrome. Anesthesiology 83:710–720

    Article  PubMed  CAS  Google Scholar 

  30. Punt CD, Schreuder JJ, Jansen JR, Hoeksel SA, Versprille A (1998) Tracing best PEEP by applying PEEP as a RAMP. Intensive Care Med 24:821–828

    Article  PubMed  CAS  Google Scholar 

  31. Suter PM, Fairley B, Isenberg MD (1975) Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 292:284–289

    Article  PubMed  CAS  Google Scholar 

  32. Brower RG, Lanken PN, Maclntyre N, et al (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351:327–336

    Article  PubMed  Google Scholar 

  33. Grasso S, Fanelli V, Cafarelli A, et al (2005) Effects of high versus low positive end-expiratory pressures in acute respiratory distress syndrome. Am J Respir Crit Care Med 171:1002–1008

    Article  PubMed  Google Scholar 

  34. Vieillard-Baron A, Loubieres Y, Schmitt JM, Page B, Dubourg O, Jardin F (1999) Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol 87:1644–1650

    PubMed  CAS  Google Scholar 

  35. Vieillard-Baron A, Schmitt JM, Augarde R, et al (2001) Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: incidence, clinical implications, and prognosis. Crit Care Med 29:1551–1555

    Article  PubMed  CAS  Google Scholar 

  36. Schmitt JM, Vieillard-Baron A, Augarde R, Prin S, Page B, Jardin F (2001) Positive end-expiratory pressure titration in acute respiratory distress syndrome patients: impact on right ventricular outflow impedance evaluated by pulmonary artery Doppler flow velocity measurements. Crit Care Med 29:1154–1158

    Article  PubMed  CAS  Google Scholar 

  37. Kuiper JW, Groeneveld AB, Slutsky AS, Plotz FB (2005) Mechanical ventilation and acute renal failure. Crit Care Med 33:1408–1415

    Article  PubMed  Google Scholar 

  38. Annat G, Viale JP, Bui XB, et al (1983) Effect of PEEP ventilation on renal function, plasma renin, aldosterone, neurophysins and urinary ADH, and prostaglandins. Anesthesiology 58:136–141

    Article  PubMed  CAS  Google Scholar 

  39. Hall SV, Johnson EE, Hedley-Whyte J (1974) Renal hemodynamics and function with continuous positive-pressure ventilation in dogs. Anesthesiology 41:452–461

    Article  PubMed  CAS  Google Scholar 

  40. Steinhoff H, Falke K, Schwarzhoff W (1982) Enhanced renal function associated with intermittent mandatory ventilation in acute respiratory failure. Intensive Care Med 8:69–74

    Article  PubMed  CAS  Google Scholar 

  41. Fink MP (2003) Intestinal epithelial hyperpermeability: update on the pathogenesis of gut mucosal barrier dysfunction in critical illness. Curr Opin Crit Care 9:143–151

    Article  PubMed  Google Scholar 

  42. Doig CJ, Sutherland LR, Sandham JD, Fick GH, Verhoef M, Meddings JB (1998) Increased intestinal permeability is associated with the development of multiple organ dysfunction syndrome in critically ill ICU patients. Am J Respir Crit Care Med 158:444–451

    PubMed  CAS  Google Scholar 

  43. Guery BP, Welsh DA, Viget NB, et al (2003) Ventilation-induced lung injury is associated with an increase in gut permeability. Shock 19:559–563

    Article  PubMed  Google Scholar 

  44. Brienza N, Revelly JP, Ayuse T, Robotham JL (1995) Effects of PEEP on liver arterial and venous blood flows. Am J Respir Crit Care Med 152:504–510

    PubMed  CAS  Google Scholar 

  45. Cook DJ, Fuller HD, Guyatt GH, et al (1994) Risk factors for gastrointestinal bleeding in critically ill patients. Canadian Critical Care Trials Group. N Engl J Med 330:377–381

    Article  PubMed  CAS  Google Scholar 

  46. Halden E, Jakobson S, Janeras L, Norlen K (1982) Effects of positive end-expiratory pressure on cardiac output distribution in the pig. Acta Anaesthesiol Scand 26:403–408

    PubMed  CAS  Google Scholar 

  47. Trager K, Radermacher P, Georgieff M (1996) PEEP and hepatic metabolic performance in septic shock. Intensive Care Med 22:1274–1275

    Article  PubMed  CAS  Google Scholar 

  48. Perkins MW, Dasta JF, DeHaven B (1989) Physiologic implications of mechanical ventilation on pharmacokinetics. DICP 23:316–323

    PubMed  CAS  Google Scholar 

  49. Hering R, Viehofer A, Zinserling J, et al (2003) Effects of spontaneous breathing during airway pressure release ventilation on intestinal blood flow in experimental lung injury. Anesthesiology 99:1137–1144

    Article  PubMed  Google Scholar 

  50. Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J (1999) Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 159:1241–1248

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media Inc.

About this paper

Cite this paper

Brander, L., Slutsky, A.S. (2006). Does Ventilator-induced Lung Injury Initiate Non-pulmonary Organ Dysfunction?. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/0-387-35096-9_39

Download citation

  • DOI: https://doi.org/10.1007/0-387-35096-9_39

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-30156-3

  • Online ISBN: 978-0-387-35096-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics