Skip to main content

Use of Continuous Positive Airway Pressure in Critically III Patients

  • Conference paper
Intensive Care Medicine

Abstract

Positive end-expiratory pressure (PEEP) or continuous positive airway pressure (CPAP) are probably the most frequently used ventilatory treatments in critically ill patients. In a recent international survey, PEEP was used in more than 90% of patients with acute respiratory distress syndrome (ARDS) and in more than 50% of patients with an exacerbation of chronic obstructive pulmonary disease (COPD) [1]. PEEP is a technique in which airway pressure is maintained above atmospheric pressure at end expiration by pressurization of the ventilatory circuit, whereas during CPAP, pressure is applied to spontaneous breathing throughout the entire respiratory cycle. Many pathological conditions benefit from the application of PEEP or CPAP, as shown by the pioneering work of Poulton and Oxon [2] and Barach and collegues [3] who demonstrated that application of positive pressure to the airway can effectively treat patients with cardiogenic pulmonary edema. Nowadays, CPAP or PEEP are used in various forms of acute respiratory failure to improve respiratory mechanics, gas exchange, and cardiac performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Esteban A, Anzueto A, Frutos F, et al (2002) Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA 287:345–355

    Article  PubMed  Google Scholar 

  2. Poulton EP, Oxon DM (1936) Left-sided heart failure with pulmonary edema. Its treatment with the “pulmonary plus pressure machine”. Lancet 2:981–983

    Article  Google Scholar 

  3. Barach AL, Martin J, Eckman M (1938) Positive pressure respiration and its application to the treatment of acute pulmonary edema. Ann Intern Med 12:754–795

    Google Scholar 

  4. Pepe PE, Marini JJ (1982) Occult positive end-expiratory pressure in mechanically ventilated patients with airflow obstruction: the auto-PEEP effect. Am Rev Respir Dis 126:166–170

    PubMed  CAS  Google Scholar 

  5. Appendini L, Patessio A, Zanaboni S, et al (1994) Physiologic effects of positive end-expiratory pressure and mask pressure support during exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 149:1069–1076

    PubMed  CAS  Google Scholar 

  6. Smith TC, Marini JJ (1988) Impact of PEEP on lung mechanics and work of breathing in severe airflow obstruction. J Appl Physiol 65:1488–1499

    PubMed  CAS  Google Scholar 

  7. Petrof BJ, Legare M, Goldberg P, Milic-Emili J, Gottfried SB (1990) Continuous positive airway pressure reduces work of breathing and dyspnea during weaning from mechanical ventilation in severe chronic obstructive pulmonary disease. Am Rev Respir Dis 141:281–289

    PubMed  CAS  Google Scholar 

  8. Nava S, Bruschi C, Rubini F, Palo A, Iotti G, Braschi A (1995) Respiratory response and inspiratory effort during pressure support ventilation in COPD patients. Intensive Care Med 21:871–879

    Article  PubMed  CAS  Google Scholar 

  9. Ranieri VM, Giuliani R, Cinnella G, et al (1993) Physiologic effects of positive end-expiratory pressure in patients with chronic obstructive pulmonary disease during acute ventilatory failure and controlled mechanical ventilation. Am Rev Respir Dis 147:5–13

    PubMed  CAS  Google Scholar 

  10. Lessard MR, Lofaso F, Brochard L (1995) Expiratory muscle activity increases intrinsic positive end-expiratory pressure independently of dynamic hyperinflation in mechanically ventilated patients. Am J Respir Crit Care Med 151:562–569

    PubMed  CAS  Google Scholar 

  11. Katz JA, Ozanne GM, Zinn SE, Fairley HB (1981) Time course and mechanisms of lung-volume increase with PEEP in acute pulmonary failure. Anesthesiology 54:9–16

    Article  PubMed  CAS  Google Scholar 

  12. Ranieri VM, Eissa NT, Corbeil C, et al (1991) Effects of positive end-expiratory pressure on alveolar recruitment and gas exchange in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 144:544–551

    PubMed  CAS  Google Scholar 

  13. Lenique F, Habis M, Lofaso F, Dubois-Rande JL, Harf A, Brochard L (1997) Ventilatory and hemodynamic effects of continuous positive airway pressure in left heart failure. Am J Respir Crit Care Med 155:500–505

    PubMed  CAS  Google Scholar 

  14. Naughton MT, Rahman MA, Hara K, Floras JS, Bradley TD (1995) Effect of continuous positive airway pressure on intrathoracic and left ventricular transmural pressures in patients with congestive heart failure. Circulation 91:1725–1731

    PubMed  CAS  Google Scholar 

  15. Appendini L, Purro A, Patessio A, et al (1996) Partitioning of inspiratory muscle workload and pressure assistance in ventilator-dependent COPD patients. Am J Respir Crit Care Med 154:1301–1309

    PubMed  CAS  Google Scholar 

  16. Conti G, Antonelli M, Navalesi P, et al (2002) Noninvasive vs. conventional mechanical ventilation in patients with chronic obstructive pulmonary disease after failure of medical treatment in the ward: a randomized trial. Intensive Care Med 28:1701–1707

    Article  PubMed  CAS  Google Scholar 

  17. Plant PK, Owen JL, Elliott MW (2000) Early use of non-invasive ventilation for acute exacerbations of chronic obstructive pulmonary disease on general respiratory wards: a multi-centre randomised controlled trial. Lancet 355:1931–1935

    Article  PubMed  CAS  Google Scholar 

  18. Tuxen DV (1989) Detrimental effects of positive end-expiratory pressure during controlled mechanical ventilation of patients with severe airflow obstruction. Am Rev Respir Dis 140:5–9

    PubMed  CAS  Google Scholar 

  19. Marini JJ (1989) Should PEEP be used in airflow obstruction? Am Rev Respir Dis 140:1–3

    PubMed  CAS  Google Scholar 

  20. Lougheed DM, Webb KA, O’Donnell DE (1995) Breathlessness during induced lung hyperinflation in asthma: the role of the inspiratory threshold load. Am J Respir Crit Care Med 152:911–920

    PubMed  CAS  Google Scholar 

  21. Martin JG, Shore S, Engel LA (1982) Effect of continuous positive airway pressure on respiratory mechanics and pattern of breathing in induced asthma. Am Rev Respir Dis 126:812–817

    PubMed  CAS  Google Scholar 

  22. Meduri GU, Cook TR, Turner RE, Cohen M, Leeper KV (1996) Noninvasive positive pressure ventilation in status asthmaticus. Chest 110:767–774

    PubMed  CAS  Google Scholar 

  23. Soroksky A, Stav D, Shpirer I (2003) A pilot prospective, randomized, placebo-controlled trial of bilevel positive airway pressure in acute asthmatic attack. Chest 123:1018–1025

    Article  PubMed  Google Scholar 

  24. Ashbaugh DG, Bigelow DB, Petty TL, Levine BE (1967) Acute respiratory distress in adults. Lancet 2:319–323

    Article  PubMed  CAS  Google Scholar 

  25. Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149:1327–1334

    PubMed  CAS  Google Scholar 

  26. Maggiore SM, Jonson B, Richard JC, Jaber S, Lemaire F, Brochard L (2001) Alveolar derecruitment at decremental positive end-expiratory pressure levels in acute lung injury: comparison with the lower inflection point, oxygenation, and compliance. Am J Respir Crit Care Med 164:795–801

    PubMed  CAS  Google Scholar 

  27. Mancini M, Zavala E, Mancebo J, et al (2001) Mechanisms of pulmonary gas exchange improvement during a protective ventilatory strategy in acute respiratory distress syndrome. Am J Respir Crit Care Med 164:1448–1453

    PubMed  CAS  Google Scholar 

  28. Delclaux C, L’Her E, Alberti C, et al (2000) Treatment of acute hypoxemic nonhypercapnic respiratory insufficiency with continuous positive airway pressure delivered by a face mask: A randomized controlled trial. JAMA 284:2352–2360

    Article  PubMed  CAS  Google Scholar 

  29. Conti G, Marino P, Cogliati A, et al (1998) Noninvasive ventilation for the treatment of acute respiratory failure in patients with hematologic malignancies: a pilot study. Intensive Care Med 24:1283–1288

    Article  PubMed  CAS  Google Scholar 

  30. Hilbert G, Gruson D, Vargas F, et al (2001) Noninvasive ventilation in immunosuppressed patients with pulmonary infiltrates, fever, and acute respiratory failure. N Engl J Med 344:481–487

    Article  PubMed  CAS  Google Scholar 

  31. Maitre B, Jaber S, Maggiore SM, et al (2000) Continuous positive airway pressure during fiberoptic bronchoscopy in hypoxemic patients. A randomized double-blind study using a new device. Am J Respir Crit Care Med 162:1063–1067

    PubMed  CAS  Google Scholar 

  32. Antonelli M, Pennisi MA, Conti G, et al (2003) Fiberoptic bronchoscopy during noninvasive positive pressure ventilation delivered by helmet. Intensive Care Med 29:126–129

    PubMed  Google Scholar 

  33. Arozullah AM, Daley J, Henderson WG, Khuri SF (2000) Multifactorial risk index for predicting postoperative respiratory failure in men after major noncardiac surgery. The National Veterans Administration Surgical Quality Improvement Program. Ann Surg 232:242–253

    Article  PubMed  CAS  Google Scholar 

  34. Antonelli M, Conti G, Bufi M, et al (2000) Noninvasive ventilation for treatment of acute respiratory failure in patients undergoing solid organ transplantation: a randomized trial. JAMA 283:235–241

    Article  PubMed  CAS  Google Scholar 

  35. Huerta S, DeShields S, Shpiner R, et al (2002) Safety and efficacy of postoperative continuous positive airway pressure to prevent pulmonary complications after Roux-en-Y gastric bypass. J Gastrointest Surg 6:354–358

    Article  PubMed  Google Scholar 

  36. van Kaam AH, Lachmann RA, Herting E, et al (2004) Reducing atelectasis attenuates bacterial growth and translocation in experimental pneumonia. Am J Respir Crit Care Med 169:1046–1053

    Article  PubMed  Google Scholar 

  37. Fagevik Olsen M, Wennberg E, Johnsson E, Josefson K, Lonroth H, Lundell L (2002) Randomized clinical study of the prevention of pulmonary complications after thoracoabdominal resection by two different breathing techniques. Br J Surg 89:1228–1234

    Article  PubMed  CAS  Google Scholar 

  38. Squadrone V, Coha M, Cerutti E, et al (2005) Continuous positive airway pressure for treatment of postoperative hypoxemia: a randomized controlled trial. JAMA 293:589–595

    Article  PubMed  CAS  Google Scholar 

  39. Rasanen J, Heikkila J, Downs J, Nikki P, Vaisanen I, Viitanen A (1985) Continuous positive airway pressure by face mask in acute cardiogenic pulmonary edema. Am J Cardiol 55:296–300

    Article  PubMed  CAS  Google Scholar 

  40. Bersten AD, Holt AW, Vedig AE, Skowronski GA, Baggoley CJ (1991) Treatment of severe cardiogenic pulmonary edema with continuous positive airway pressure delivered by face mask. N Engl J Med 325:1825–1830

    Article  PubMed  CAS  Google Scholar 

  41. Lin M, Yang YF, Chiang HT, Chang MS, Chiang BN, Cheitlin MD (1995) Reappraisal of continuous positive airway pressure therapy in acute cardiogenic pulmonary edema. Short-term results and long-term follow-up. Chest 107:1379–1386

    PubMed  CAS  Google Scholar 

  42. Moritz F, Benichou J, Vanheste M, et al (2003) Boussignac continuous positive airway pressure device in the emergency care of acute cardiogenic pulmonary oedema: a randomized pilot study. Eur J Emerg Med 10:204–208

    Article  PubMed  Google Scholar 

  43. L’Her E, Duquesne F, Girou E, et al (2004) Noninvasive continuous positive airway pressure in elderly cardiogenic pulmonary edema patients. Intensive Care Med 30:882–888

    Article  PubMed  Google Scholar 

  44. Crane SD, Elliott MW, Gilligan P, Richards K, Gray AJ (2004) Randomised controlled comparison of continuous positive airways pressure, bilevel non-invasive ventilation, and standard treatment in emergency department patients with acute cardiogenic pulmonary oedema. Emerg Med J 21:155–161

    Article  PubMed  CAS  Google Scholar 

  45. Park M, Sangean MC, Volpe Mde S, et al (2004) Randomized, prospective trial of oxygen, continuous positive airway pressure, and bilevel positive airway pressure by face mask in acute cardiogenic pulmonary edema. Crit Care Med 32:2407–2415

    Article  PubMed  Google Scholar 

  46. Mehta S, Jay GD, Woolard RH, et al (1997) Randomized, prospective trial of bilevel versus continuous positive airway pressure in acute pulmonary edema. Crit Care Med 25:620–628

    Article  PubMed  CAS  Google Scholar 

  47. Bellone A, Monari A, Cortellaro F, Vettorello M, Arlati S, Coen D (2004) Myocardial infarction rate in acute pulmonary edema: noninvasive pressure support ventilation versus continuous positive airway pressure. Crit Care Med 32:1860–1865

    Article  PubMed  Google Scholar 

  48. Antonelli M, Conti G, Pelosi P, et al (2002) New treatment of acute hypoxemic respiratory failure: Noninvasive pressure support ventilation delivered by helmet: a pilot controlled trial. Crit Care Med; 30:602–608

    Article  PubMed  Google Scholar 

  49. Antonelli M, Pennisi MA, Pelosi P, et al (2004) Noninvasive positive pressure ventilation using a helmet in patients with acute exacerbation of chronic obstructive pulmonary disease: a feasibility study. Anesthesiology 100:16–24

    Article  PubMed  Google Scholar 

  50. Patroniti N, Foti G, Manfio A, Coppo A, Bellani G, Pesenti A (2003) Head helmet versus face mask for non-invasive continuous positive airway pressure: a physiological study. Intensive Care Med 29:1680–1687

    Article  PubMed  Google Scholar 

  51. Tonnelier JM, Prat G, Nowak E, et al (2003) Noninvasive continuous positive airway pressure ventilation using a new helmet interface: a case-control prospective pilot study. Intensive Care Med 29:2077–2080

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media Inc.

About this paper

Cite this paper

Maggiore, S.M., Arcangeli, A., Antonelli, M. (2006). Use of Continuous Positive Airway Pressure in Critically III Patients. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/0-387-35096-9_36

Download citation

  • DOI: https://doi.org/10.1007/0-387-35096-9_36

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-30156-3

  • Online ISBN: 978-0-387-35096-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics