Skip to main content

Diaphragmatic Dysfunction in Intensive Care

  • Chapter
Sepsis
  • 1158 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vassilakopoulos T, Zakynthinos S, Roussos C. The tension-time index and the frequency/tidal volume ratio are the major pathophysiologic determinants of weaning failure and success. Am J Respir Crit Care Med 1998;158:378–85.

    PubMed  CAS  Google Scholar 

  2. Ebiara S, Hussain SNA, Danialou G, et al. Mechanical ventilation protects against diaphragm injury in sepsis: interaction of oxidative and mechanical stresses. Am J Respir Crit Care Med 2002;165:221–8.

    Google Scholar 

  3. American Thoracic Society, European Society of Intensive Care Medicine, Societé de Reanimation de Langue Francaise. International consensus conferences in intensive care medicine; ventilator-associated lung injury in ARDS. Am J Respir Crit Care Med 1999;160:2118–4.

    Google Scholar 

  4. Vassilakopoulus T, Petrof B. Ventilate induced diaphragmatic dysfunction. Am J Respir Crit Care Med 2004;169:336–41.

    Article  Google Scholar 

  5. Esteban A, Frutos F, Tobin MJ, et al. A comparison of four methods of weaning patients from mechanical ventilation. Spanish Lung Failure Collaborative Group. N Engl J Med 1995;332:345–50.

    Article  PubMed  CAS  Google Scholar 

  6. Laghi F, Cattapan S, Jubran A, et al. Is weaning failure caused by low frequency fatigue of the diaphragm? Am J Respir Crit Care Med 2003;167:120–7.

    Article  PubMed  Google Scholar 

  7. Vassilakopoulos T, Zakynthinos S, Roussos C. Respiratory muscles and weaning failure. Eur Respir J 1996;9:2383–400.

    Article  PubMed  CAS  Google Scholar 

  8. Deem S, Lee CM, Curtis JR. Acquired neuromuscular disorders in the intensive care unit. Am J Respir Crit Care Med 2003;168:735–9.

    Article  PubMed  Google Scholar 

  9. Anzueto A, Peters JT, Tobin MJ, et al. Effects of prolonged controlled mechanical ventilation on diaphragmatic function in healthy adult baboons. Crit Are Med 1997;25:1187–90.

    Article  CAS  Google Scholar 

  10. Radell PJ, Remabl S, Nichols DG, et al. Effects of prolonged mechanical ventilation and inactivity on piglet diaphragm function. Intensive Care Med 2002;28:358–65.

    Article  PubMed  Google Scholar 

  11. Sassoon CS, Caiozzo VJ, Manka A, et al. Altered diaphragm contractile properties with controlled mechanical ventilation. J Appl Physial 2002;92:2585–95.

    Google Scholar 

  12. Le Bourdelles G, Viires N, Boczkowski J, et al. Effects of mechanical ventilation on diaphragmatic contractile properties in rats. Am J Respir Crit Care Med 1994;149:1539–44.

    PubMed  Google Scholar 

  13. Yang L, Luo J, Bourdon J, et al. Controlled mechanical ventilation leads to the remodeling of the rat diaphragm. Am J Respir Crit Care Med 2002;166:1135–40.

    Article  PubMed  Google Scholar 

  14. Bernard N, Matecki S, Py G, et al. Effects of prolonged mechanical ventilation on respiratory muscle ultrastructure and mitochondrial respiration in rabbits. Intensive Care Med 2003;29:111–8.

    PubMed  Google Scholar 

  15. Watson AC, Hughes PD, Louise HM, et al. Measurement of twitch transdiaphragmatic, esophageal, and endotracheal tube pressure with bilateral anterolateral magnetic phrenic nerve stimulation in patients in the intensive care unit. Crit Care Med 2001;29:1325–31

    Article  PubMed  CAS  Google Scholar 

  16. Bellemare F, Grassino A. Force reserve of the diaphragm in patients with chronic obstructive pulmonary disease. J Appl Physiol 1983;55:8–15.

    PubMed  CAS  Google Scholar 

  17. Shanely RA, Zergeroglu MA, Lennon SL, et al. Mechanical ventilation-induced diaphragmatic atrophy is associated with oxidative injury and increased proteolytic activity. Am J Respir Crit Care Med 2002;166:1369–74.

    Article  PubMed  Google Scholar 

  18. Ku Z, Yang J, Menon V, Thomason DB. Decreased polysomal HSP-70 may slow polypeptide elongation during skeletal muscle atrophy. Am J Physiol 1995;268:C1369–74.

    PubMed  CAS  Google Scholar 

  19. Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Setence 2001;294:1704–8.

    CAS  Google Scholar 

  20. Zergeroglu MA, McKenzie MJ, Shanely RA, et al. Mechanical ventilation-induced oxidative stress in the diaphragm. J Appl Physiol 2003;95:1116–24.

    PubMed  CAS  Google Scholar 

  21. Reid MB. Redox modulation of skeletal muscle contraction: what we know and what we do not. Invited review. J Appl Physiol 2001;90:724–31.

    Article  PubMed  CAS  Google Scholar 

  22. Vijayan K, Thompson JL, Norenberg KM, et al. Fibertype susceptibility to eccentric contraction-induced damage of hindlimb-unloaded rat AL, muscle. J Appl Physiol 2001;90:770–6.

    PubMed  CAS  Google Scholar 

  23. Geiger PC, Cady MJ, Macken RL, et al. Maximum specific force depends on myosin heavy chain content in rat diaphragm muscle fibers. J Appl Physiol 200;89:695–703.

    Google Scholar 

  24. Shanely RA, Coombes JS, Zergeroglu AM, et al. Short-duration mechanical ventilation enhances diaphragmatic fatigue resistance but impairs force production. Chest 2003;123:195–201.

    Article  PubMed  Google Scholar 

  25. Vassilakopoulos T, Divangahi M, Rallis G. Differential cytokine gene expression in the diaphragm in response to strenuous resistive breathing. Am J Respir Crit Care Med 2004;170:154–61.

    Article  PubMed  Google Scholar 

  26. Vassilakopoulos T, Zakynthinos S, Roussos C. Strenuous resistive breathing induces pro-inflammatory cytokines and stimulates the HPA axis in humans. Am J Physiol 1997;277:R1013–9.

    Google Scholar 

  27. Cileeson M. Interleukins and exercise. J Physiol 2000;529:1.

    Article  Google Scholar 

  28. Talmadge RJ. Myosin heavy chain isoform expression following reduced neuromuscular activity: potential regulatory mechanisms. Muscle Nerve 2003;23:661–79.

    Article  Google Scholar 

  29. Supinski G, Nethery D, DiMarco A. Effect of free radical scavengers on endotoxin-induced respiratory muscle function. Am Rev Respir Dis 1993;148:1318–24.

    PubMed  CAS  Google Scholar 

  30. Hatipoglu V, Laghi F, Tobin M. Does inhaled albuterol improve diaphragmatic contractility in patients with chronic obstructive pulmonary disease? Am J Respir Crit Care Med 1994;160:1916–21.

    Google Scholar 

  31. Sassoon C, Zhu E, Caiozzo V. Assist-control mechanical ventilation attenuates ventilator induced diaphragmatic dysfunction. Am J Respir Crit Care Med 2004;170:626–32.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Ortiz-Ruiz, G. (2006). Diaphragmatic Dysfunction in Intensive Care. In: Ortiz-Ruiz, G., Perafán, M.A., Faist, E., Castell, C.D. (eds) Sepsis. Springer, New York, NY. https://doi.org/10.1007/0-387-34574-4_5

Download citation

  • DOI: https://doi.org/10.1007/0-387-34574-4_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-29816-0

  • Online ISBN: 978-0-387-34574-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics