Skip to main content

Lactic Acidosis in Critically Ill Septic Patients

  • Chapter
Sepsis
  • 1225 Accesses

Conclusion

Lactic acidosis is frequent in patients with septic shock and is associated with an impaired outcome. Measurements of blood lactate concentrations are useful to detect occult tissue hypoxia and to monitor the effects of therapy. Even though hyperlactatemia can be due to other causes than tissue hypoxia, and in particular to inflammatory processes so that hemodynamic interventions may not always be warranted, the rapid recognition of lactic acidosis is essential as it allows the provision of early interventions that can be lifesaving.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhang H, Rogiers P, De Backer D, et al. Regional arteriovenous differences in PCO2 and pH can reflect critical organ oxygen delivery during endotoxemia. Shock 1996;5:349–56.

    Article  PubMed  CAS  Google Scholar 

  2. Barefield ES, Oh W, Stonestreet BS. Group B streptococcus-induced acidosis in newborn swine: regional oxygen transport and lactate flux. J Appl Physiol 1992;72:272–7.

    PubMed  CAS  Google Scholar 

  3. Lundsgaard-Hansen P, Pappova E, Urbaschek B, et al. Circulatory deterioration as the determinant of energy metabolism in endotoxin shock. J Surg Res 1972;13:282–8.

    Article  PubMed  CAS  Google Scholar 

  4. Townsend MC, Hampton WW, Haybron DM, et al. Effective organ blood flow and bioenergy status in murine peritonitis. Surgery 1986;100:205–13.

    PubMed  CAS  Google Scholar 

  5. Levy B, Valtier M, de Chillou C, et al. Beneficial effects of L-canavanine, a selective inhibitor of inducible nitric oxide synthase, on lactate metabolism and muscle high energy phosphates during endotoxic shock in rats. Shock 1999;11:98–103.

    Article  PubMed  CAS  Google Scholar 

  6. Hart DW, Gore DC, Rinehart AJ, et al. Sepsis-induced failure of hepatic energy metabolism. J Surg Res 2003;115:139–47.

    Article  PubMed  CAS  Google Scholar 

  7. Liaw KY. Effect of injury, sepsis, and parenteral nutrition on high-energy phosphates in human liver and muscle. JPEN 1985;9:28–33.

    CAS  Google Scholar 

  8. Dugas MA, Proulx F, de Jaeger A, et al. Markers of tissue hypoperfusion in pediatric septic shock. Intensive Care Med 2000;26:75–83.

    Article  PubMed  CAS  Google Scholar 

  9. Levy B, Sadoune LO, Gelot AM, et al. Evolution of lactate/pyruvate and arterial ketone body ratios in the early course of catecholamine-treated septic shock. Crit Care Med 2000;28:114–9.

    Article  PubMed  CAS  Google Scholar 

  10. Vary TC, Siegel JH, Nakatani T, et al. Effect of sepsis on activity of pyruvate dehydrogenase complex in skeletal muscle and liver. Am J Physiol 1986;250:E634–40.

    PubMed  CAS  Google Scholar 

  11. Vary TC. Sepsis-induced alterations in pyruvate dehydrogenase complex activity in rat skeletal muscle: effects on plasma lactate. Shock 1996;6:89–94.

    Article  PubMed  CAS  Google Scholar 

  12. Stacpoole PW, Wright EC, Baumgartner TG, et al. A controlled clinical trial of dichloroacetate for treatment of lactic acidosis in adults. The Dichloroacetate-Lactic Acidosis Study Group. N Engl J Med 1992;327:1564–9.

    Article  PubMed  CAS  Google Scholar 

  13. Gore DC, Jahoor F, Hibbert JM, et al. Lactic acidosis during sepsis is related to increased pyruvate production, not deficits in tissue oxygen availability. Ann Surg 1996;224:97–102.

    Article  PubMed  CAS  Google Scholar 

  14. James JH, Fang CH, Schrantz SJ, et al. Linkage of aerobic glycolysis to sodium-potassium transport in rat skeletal muscle: implications for increased muscle lactate production in sepsis. J Clin Invest 1996;98:2388–97.

    Article  PubMed  CAS  Google Scholar 

  15. James JH, Luchette FA, McCarter FD, et al. Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 1999;354:505–8.

    Article  PubMed  CAS  Google Scholar 

  16. Bundgaard H, Kjeldsen K, Suarez KK, et al. Endotoxemia stimulates skeletal muscle Na+-K+-ATPase and raises blood lactate under aerobic conditions in humans. Am J Physiol Heart Circ Physiol 2003;284:H1028–34.

    PubMed  CAS  Google Scholar 

  17. Luchette FA, Robinson BR, Friend LA, et al. Adrenergic antagonists reduce lactic acidosis in response to hemorrhagic shock. J Trauma 1999;46:873–80.

    Article  PubMed  CAS  Google Scholar 

  18. Novel-Chate V, Rey V, Chiolero R, et al. Role of Na+-K+-ATPase in insulin-induced lactate release by skeletal muscle. Am J Physiol Endocrinol Metab 2001;280:E296–300.

    PubMed  CAS  Google Scholar 

  19. Abad B, Mesonero JE, Salvador MT, et al. Effect of lipopolysaccharide on small intestinal L-leucine transport in rabbit. Dig Dis Sci 2001;46:1113–9.

    Article  PubMed  CAS  Google Scholar 

  20. Wolfe R, Herndon D, Jahoor F, et al. Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med 1987;317:403–8.

    Article  PubMed  CAS  Google Scholar 

  21. L’Her E, Sebert P. A global approach to energy metabolism in an experimental model of sepsis. Am J Respir Crit Care Med 2001;164:1444–7.

    PubMed  CAS  Google Scholar 

  22. Haji-Michael PG, Ladriere L, Sener A, et al. Leukocyte glycolysis and lactate output in animal sepsis and ex vivo human blood. Metabolism 1999;48:779–85.

    Article  PubMed  CAS  Google Scholar 

  23. L’Her E, Sebert P. Effects of dichloroacetate and ubiquinone infusions on glycolysis activity and thermal sensitivity during sepsis. J Lab Clin Med 2004;143:352–7.

    Article  PubMed  CAS  Google Scholar 

  24. Levraut J, Ciebiera JP, Chave S, et al. Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med 1998;157:1021–6.

    PubMed  CAS  Google Scholar 

  25. Levraut J, Ichai C, Petit I, et al. Low exogenous lactate clearance as an early predictor of mortality in normolactatemic critically ill septic patients. Crit Care Med 2003;31:705–10.

    Article  PubMed  CAS  Google Scholar 

  26. Bellomo R, Kellum JA, Pinsky MR. Transvisceral lactate fluxes during early endotoxemia. Chest 1996;110:198–204.

    PubMed  CAS  Google Scholar 

  27. De Backer D, Creteur J, Zhang H, et al. Lactate production by the lungs in acute lung injury. Am J Respir Crit Care Med 1997;156:1099–104.

    PubMed  Google Scholar 

  28. Tugtekin I, Radermacher P, Theisen M, et al. Increased ileal-mucosal-arterial PCO2 gap is associated with impaired villus microcirculation in endotoxic pigs. Intensive Care Med 2001;27:757–66.

    Article  PubMed  CAS  Google Scholar 

  29. Creteur J, De Backer D, Sun Q, et al. The hepatosplanchnic contribution to hyperlactatemia in endotoxic shock: effects of tissue ischemia. Shock 2004;21:438–43.

    Article  PubMed  CAS  Google Scholar 

  30. De Backer D, Creteur J, Silva E, et al. The hepatosplanchnic area is not a common source of lactate in patients with severe sepsis. Crit Care Med 2001;29:256–61.

    Article  PubMed  Google Scholar 

  31. Adrie C, Bachelet M, Vayssier-Taussat M, et al. Mitochondrial membrane potential and apoptosis peripheral blood monocytes in severe human sepsis. Am J Respir Crit Care Med 2001;164:389–95.

    PubMed  CAS  Google Scholar 

  32. Brealey D, Brand M, Hargreaves I, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 2002;360:219–23.

    Article  PubMed  CAS  Google Scholar 

  33. De Backer D, Creteur J, Noordally O, et al. Does hepato-splanchnic VO2/DO2 dependency exist in critically ill septic patients? Am J Respir Crit Care Med 1998;157:1219–25.

    PubMed  Google Scholar 

  34. Stacpoole PW, Wright EC, Baumgartner TG, et al. Natural history and course of acquired lactic acidosis in adults. Am J Med 1994;97:47–54.

    Article  PubMed  CAS  Google Scholar 

  35. Bakker J, Coffernils M, Leon M, et al. Blood lactate levels are superior to oxygen derived variables in predicting outcome in human septic shock. Chest 1991;99:956–62.

    PubMed  CAS  Google Scholar 

  36. Weil MH, Afifi AA. Experimental and clinical studies on lactate and pyruvate as indicators of the severity of acute circulatory failure (shock). Circulation 1970;41:989–1001.

    PubMed  CAS  Google Scholar 

  37. Bakker J, Gris P, Coffernils M, et al. Serial blood lactate levels can predict the development of multiple organ failure following septic shock. Am J Surg 1996;171:221–6.

    Article  PubMed  CAS  Google Scholar 

  38. Rivers E, Nguyen B, Havstadt S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001;345:1368–77.

    Article  PubMed  CAS  Google Scholar 

  39. Arieff AI, Park A, Leach W, et al. Systemic effects of NaHCO3 in experimental lactic acidosis in dogs. Am J Physiol 1982;242:F586–91.

    PubMed  CAS  Google Scholar 

  40. Graf H, Leach W, Arieff AI. Evidence for a detrimental effect of bicarbonate therapy in hypoxic lactic acidosis. Science 1985;227:754–6.

    Article  PubMed  CAS  Google Scholar 

  41. De Backer D. Lactic acidosis. Intensive Care Med 2003;29:699–702.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

De Backer, D. (2006). Lactic Acidosis in Critically Ill Septic Patients. In: Ortiz-Ruiz, G., Perafán, M.A., Faist, E., Castell, C.D. (eds) Sepsis. Springer, New York, NY. https://doi.org/10.1007/0-387-34574-4_11

Download citation

  • DOI: https://doi.org/10.1007/0-387-34574-4_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-29816-0

  • Online ISBN: 978-0-387-34574-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics