Skip to main content

Complementarity constraints as nonlinear equations: Theory and numerical experience

  • Chapter

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 2))

Summary

Recently, it has been shown that mathematical programs with complementarity constraints (MPCCs) can be solved efficiently and reliably as nonlinear programs. This paper examines various nonlinear formulations of the complementarity constraints. Several nonlinear complementarity functions are considered for use in MPCC. Unlike standard smoothing techniques, however, the reformulations do not require the control of a smoothing parameter. Thus they have the advantage that the smoothing is exact in the sense that Karush-Kuhn-Tucker points of the reformulation correspond to strongly stationary points of the MPCC. A new exact smoothing of the well-known min function is also introduced and shown to possess desirable theoretical properties. It is shown how the new formulations can be integrated into a sequential quadratic programming solver, and their practical performance is compared on a range of test problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Anitescu. Global convergence of an elastic mode approach for a class of mathematical programs with complementarity constraints. SIAM J. Optimization, 16(1):120–145, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. F. Bard. Convex two-level optimization. Mathematical Programming, 40(1):15–27, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Benson, A. Sen, D. F. Shanno, and R. V. D. Vanderbei. Interior-point algorithms, penalty methods and equilibrium problems. Technical Report ORFE-03-02, Princeton University, Operations Research and Financial Engineering, October 2003. To appear in Computational Optimization and Applications.

    Google Scholar 

  4. B. Chen, X. Chen, and C. Kanzow. A penalized Fischer-Burmeister NCP-function. Mathematical Programming, 88(1):211–216, June 2000.

    Article  MathSciNet  MATH  Google Scholar 

  5. Y. Chen and M. Florian. The nonlinear bilevel programming problem: Formulations, regularity and optimality conditions. Optimization, 32:193–209, 1995.

    MathSciNet  MATH  Google Scholar 

  6. B. Chen and P. T. Harker. Smooth approximations to nonlinear complementarity problems. SIAM J. Optimization, 7(2):403–420, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. P. Dirkse, M. C. Ferris, and A. Meeraus. Mathematical programs with equilibrium constraints: Automatic reformulation and solution via constraint optimization. Technical Report NA-02/11, Oxford University Computing Laboratory, July 2002.

    Google Scholar 

  8. S. P. Dirkse. MPEC world. Webpage, GAMS Development Corp., www.gamsworld.org/mpec/, 2001.

    Google Scholar 

  9. Elizabeth D. Dolan and Jorge Moré. Benchmarking optimization software with cops. Technical Report MCS-TM-246, MCS Division, Argonne National Laboratory, Argonne, IL, November 2000.

    Google Scholar 

  10. R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modelling Language for Mathematical Programming. Books/Cole—Thomson Learning, 2nd edition, 2003.

    Google Scholar 

  11. R. Fletcher, N. I. M. Gould, S. Leyffer, Ph. L. Toint, and A. Wächter. Global convergence of trust-region SQP-filter algorithms for general nonlinear programming. SIAM J. Optimization, 13(3):635–659, 2002.

    Article  MATH  Google Scholar 

  12. A. Fischer. A Newton-type method for positive semi-definite linear complementarity problems. Journal of Optimization Theory and Applications, 86:585–608, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Facchinei, H. Jiang, and L. Qi. A smoothing method for mathematical programs with equilibrium constraints. Mathematical Programming, 85:107–134, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function. Mathematical Programming, 91:239–270, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Fletcher and S. Leyffer. Solving mathematical program with complementarity constraints as nonlinear programs. Optimization Methods and Software, 19(1):15–40, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Fletcher. Practical Methods of Optimization, 2nd edition. John Wiley, Chichester, 1987.

    MATH  Google Scholar 

  17. R. Fletcher, S. Leyffer, D. Ralph, and S. Scholtes. Local convergence of SQP methods for mathematical programs with equilibrium constraints. Numerical Analysis Report NA/209, Department of Mathematics, University of Dundee, Dundee, UK, May 2002. To appear in SIAM J. Optimization.

    Google Scholar 

  18. R. Fletcher, S. Leyffer, and Ph. L. Toint. On the global convergence of a filter-SQP algorithm. SIAM J. Optimization, 13(1):44–59, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. C. Ferris and J. S. Pang. Engineering and economic applications of complementarity problems. SIAM Review, 39(4):669–713, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  20. P.E. Gill, W. Murray, and M.A. Saunders. SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Journal on Optimization, 12(4):979–1006, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Jiang and D. Ralph. QPECgen, a MATLAB generator for mathematical programs with quadratic objectives and affine variational inequality constraints. Computational Optimization and Applications, 13:25–59, 1999.

    Article  MathSciNet  Google Scholar 

  22. S. Leyffer. MacMPEC: AMPL collection of MPECs. Webpage, www.mcs.anl.gov/~leyffer/MacMPEC/, 2000.

    Google Scholar 

  23. Z.-Q. Luo, J.-S. Pang, and D. Ralph. Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge, UK, 1996.

    Google Scholar 

  24. X. Liu and J. Sun. Generalized stationary points and an interior point method for mathematical programs with equilibrium constraints. Mathematical Programming B, 101(1):231–261, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  25. T. S. Munson, F. Facchinei, M. C. Ferris, A. Fischer, and C. Kanzow. The semismooth algorithm for large scale complementarity problems. INFORMS J. Computing, 13(4):294–311, 2001.

    Article  MathSciNet  Google Scholar 

  26. J. Outrata, M. Kocvara, and J. Zowe. Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer Academic Publishers, Dordrecht, 1998.

    MATH  Google Scholar 

  27. A. Raghunathan and L. T. Biegler. Barrier methods for mathematical programs with complementarity constraints (MPCCs). Technical report, Carnegie Mellon University, Department of Chemical Engineering, Pittsburgh, PA, December 2002.

    Google Scholar 

  28. A. Raghunathan and L. T. Biegler. MPEC formulations and algorithms in process engineering. Technical report, Carnegie Mellon University, Department of Chemical Engineering, Pittsburgh, PA, 2002.

    Google Scholar 

  29. A. Raghunathan and L. T. Biegler. An interior point method for mathematical programs with complementarity constraints (MPCCs). SIAM Journal on Optimization, 15(3):720–750, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  30. H. Scheel and S. Scholtes. Mathematical program with complementarity constraints: Stationarity, optimality and sensitivity. Mathematics of Operations Research, 25:1–22, 2000.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Leyffer, S. (2006). Complementarity constraints as nonlinear equations: Theory and numerical experience. In: Dempe, S., Kalashnikov, V. (eds) Optimization with Multivalued Mappings. Springer Optimization and Its Applications, vol 2. Springer, Boston, MA . https://doi.org/10.1007/0-387-34221-4_9

Download citation

Publish with us

Policies and ethics