Skip to main content

Inactivation of Complement by Recombinant Human C3 Derivatives

  • Conference paper
Current Topics in Complement

Part of the book series: Advances in Experimental Medicine and Biology ((volume 586))

  • 1358 Accesses

6. Conclusions

In summary, the design of recombinant C3 molecules with tailor-made anti-complementary properties represents a novel approach for depletion or modulation of complement, the mechanism of which is based on the well-established anti-complementary reagent CVF. Moreover, the characteristics of the derivatives can enable further molecular analyses and insights into the mechanisms of convertase formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. P.A. Kemp, J.H. Spragg, J.C. Brown, B.P. Morgan, C.A. Gunn, and P.W. Taylor, Immunohistochemical determination of complement activation in joint tissues of patients with rheumatoid arthritis and osteoarthritis using neoantigen-specific monoclonal antibodies, J Clin Lab Immunol 37, 147–162 (1992).

    PubMed  CAS  Google Scholar 

  2. J.K. Kirklin, S. Westaby, E.H. Blackstone, J.W. Kirklin, D.E. Chenoweth, and A.D. Pacifico, Complement and the damaging effects of cardiopulmonary bypass, J Thorac Cardiovasc Surg 86, 845–857 (1983).

    PubMed  CAS  Google Scholar 

  3. J.W. Homeister, P. Satoh, and B.R. Lucchesi, Effects of complement activation in the isolated heart: role of the terminal complement components, Circ Res 71, 303–319 (1992).

    PubMed  CAS  Google Scholar 

  4. J.A. Hill, and P.A. Ward, The phlogistic role of C3 leukotactic fragments in myocardial infarcts of rats, J Exp Med 133, 885–900 (1971).

    Article  PubMed  CAS  Google Scholar 

  5. H.F. Weisman, T. Bartow, M.K. Leppo, H.C. Marsh Jr, G.R. Carson, M.F. Concino, M.P. Boyle, K.H. Roux, M.L. Weisfeldt, and D.T. Fearon, Soluble human complement receptor type 1: in vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis, Science 249, 146–151 (1990).

    Article  PubMed  CAS  Google Scholar 

  6. M.J. Evans, S.A. Rollins, D.W. Wolff, R.P. Rother, A.J. Norin, D.M. Therrien, G.A. Grijalva, J.P. Mueller, S.H. Nye, S.P. Squinto, and J.A. Wilkins, In vitro and in vivo inhibition of complement activity by a single-chain Fv fragment recognizing human C5, Mol Immunol 32, 1183–1195 (1995).

    Article  PubMed  CAS  Google Scholar 

  7. A.E. Fiane, T.E. Mollnes, V. Videm, T. Hovig, K. Hogasen, O.J. Mellbye, L. Spruce, W.T. Moore, A. Sahu, J.D. Lambris, Prolongation of ex vivo-perfused pig xenograft survival by the complement inhibitor compstatin, Transplant Proc 31, 934–935 (1999).

    Article  PubMed  CAS  Google Scholar 

  8. J. Kölln, M. Matzas, N. Jänner, T. Mix, K. Klensang, R. Bredehorst, and E. Spillner. Functional analysis of cobra venom factor/human C3 chimeras transiently expressed in mammalian cells. Mol Immunol 41, 19–28 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. J. Kölln, E. Spillner, J. Andrä, K. Klensang, and R. Bredehorst, Complement inactivation by recombinant human C3 derivatives, J Immunol 173(3), 5540–5545 (2004).

    PubMed  Google Scholar 

  10. M.K. Pangburn, and H.J. Müller-Eberhard, The alternative pathway of complement, Springer Semin Immunopathol 7, 163–192 (1984).

    Article  PubMed  CAS  Google Scholar 

  11. D.T. Fearon, and K.F. Austen, Properdin: binding to C3b and stabilization of the C3b-dependent C3 convertase, J Exp Med 142, 856–863 (1975).

    Article  PubMed  CAS  Google Scholar 

  12. M.K. Liszewski, and J.P. Atkinson, in: The human complement system in health and disease, edited by J.E. Volanakis and M.M. Frank (Marcel Dekker Inc., New York 1998), pp. 149–166.

    Google Scholar 

  13. J. Alsenz, J. D. Becherer, B. Nilsson, and J. D. Lambris, Structural and functional analysis of C3 using monoclonal antibodies, Curr Top Microbiol Immunol 153, 235 (1990).

    PubMed  CAS  Google Scholar 

  14. P. Garred, T. E. Mollnes, and M. D. Kazatchkine, Activation-dependent antigenic changes of human C3, Complement Inflamm 6, 205 (1989).

    PubMed  CAS  Google Scholar 

  15. J._D. Lambris, D. Avila, J. D. Becherer, and H. J. Müller-Eberhard, A discontinuous factor H binding site in the third component of complement as delineated by synthetic peptides, J Biol Chem 263, 121–147 (1988).

    Google Scholar 

  16. Z. Fishelson, Complement C3: a molecular mosaic of binding sites. Mol Immunol 28, 545 (1991).

    Article  PubMed  CAS  Google Scholar 

  17. J. Alsenz, D. Avila, H. P. Huemer, I. Esparza, J. D. Becherer, T. Kinoshita, Y. Wang, S. Oppermann, and J. D. Lambris, Phylogeny of the third component of complement, C3: analysis of the conservation of human CR1, CR2, H, and B binding sites, concanavalin A binding sites, and thiolester bond in the C3 from different species, Dev Comp Immunol 16, 63 (1992).

    Article  PubMed  CAS  Google Scholar 

  18. J._D. Lambris, Z. Lao, T. J. Oglesby, J. P. Atkinson, C. E. Hack, and J. D. Becherer, Dissection of CR1, factor H, membrane cofactor protein, and factor B binding and functional sites in the third complement component, J Immunol 156, 4821 (1996).

    PubMed  CAS  Google Scholar 

  19. A. Taniguchi-Sidle, and D. E. Isenman, Interactions of human complement component C3 with factor B and with complement receptors type 1 (CR1, CD35) and type 3 (CR3, CD11b/CD18) involve an acidic sequence at the N-terminus of C3 alphachain, J Immunol 153, 5285 (1994).

    PubMed  CAS  Google Scholar 

  20. A._E. Oran, and D. E. Isenman, Identification of residues within the 727–767 segment of human complement component C3 important for its interaction with factor H and with complement receptor 1 (CR1, CD35), J Biol Chem 274, 5120 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. R.G. Medicus, O. Gotze, and Müller-Eberhard, Alternative pathway of complement: recruitment of precursor properdin by the labile C3/C5 convertase and the potentiation of the pathway, J Exp Med 144, 1076–93 (1976).

    Article  PubMed  CAS  Google Scholar 

  22. H.J. Müller-Eberhard, and K.E. Fjellstrom, Isolation of the anticomplementary protein from cobra venom, its mode of action on C3. J Immunol 107, 1666–1672 (1971).

    PubMed  Google Scholar 

  23. C.W. Vogel, and H.J. Müller-Eberhard, The cobra venom factor-dependent C3 convertase of human complement. A kinetic and thermodynamic analysis of a protease acting on its natural high molecular weight substrate, J Biol Chem 257, 8292–91982 (1982).

    PubMed  CAS  Google Scholar 

  24. C.W. Vogel, R. Bredehorst, D.C. Fritzinger, T. Grunwald, P. Ziegelmüller, M.A. Kock, Structure and function of cobra venom factor, the complement-activating protein in cobra venom, Adv Exp Med Biol 391, 97–114 (1996).

    PubMed  CAS  Google Scholar 

  25. D.C. Fritzinger, R. Bredehorst, C.W. Vogel, Molecular cloning, derived primary structure of cobra venom factor, Proc Natl Acad Sci USA 91, 12775–12779 (1994).

    Article  PubMed  CAS  Google Scholar 

  26. B.P. Morgan, and C.L. Harris, Complement therapeutics: history and current progress, Mol Immunol 40, 159–170 (2003).

    Article  PubMed  CAS  Google Scholar 

  27. M.A. Kock, Expression and characterization of recombinant cobra venom factor, PhD dissertation, University of Hamburg, Hamburg, Germany (1996).

    Google Scholar 

  28. M.A. Kock, B. Hew, H. Bammert, D.C. Fritzinger, and C.-W. Vogel, Structure and function of recombinant cobra venom factor, J Biol Chem 279(29), 30836–30843 (2004).

    Article  PubMed  CAS  Google Scholar 

  29. A. Taniguchi-Sidle, and D. E. Isenman, Mutagenesis of the Arg-Gly-Asp triplet in human complement component C3 does not abolish binding of iC3b to the leukocyte integrin complement receptor type III (CR3, CD11b/CD18). J Biol Chem 267(1), 635–643 (1992).

    PubMed  CAS  Google Scholar 

  30. M.C. O’Keefe, L.H. Caporale, and C.W. Vogel, A novel cleavage product of human complement component C3 with structural and functional properties of cobra venom factor, J Biol Chem 263, 12690–12697 (1988).

    PubMed  CAS  Google Scholar 

  31. M. Sardy, U. Odenthal, S. Karpati, M. Paulsson, N. Smyth, Recombinant human tissue transglutaminase ELISA for the diagnosis of gluten-sensitive enteropathy, Clin Chem 45, 2142–2149 (1999).

    PubMed  CAS  Google Scholar 

  32. J. McCafferty, A.D. Griffiths, G. Winter, and D.J. Chiswell, Phage antibodies: filamentous phage displaying antibody variable domains, Nature 348, 552 (1990).

    Article  PubMed  CAS  Google Scholar 

  33. J. Kölln, R. Bredehorst, and E. Spillner, Engineering of human complement component C3 for catalytic inhibition of complement. Immunol Lett 98, 49–56 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. P. Bork, and A. Bairoch, Extracellular protein modules: a proposed nomenclature, Trends Biochem Sci 20, poster suppl. (1995).

    Google Scholar 

  35. L. Banyai L, and L. Patthy, The NTR module: domains of netrins, secreted frizzled related proteins, type I procollagen C-proteinase enhancer protein are homologous with tissue inhibitors of metalloproteinases, Protein Sci 8, 1636–1642 (1999).

    Article  PubMed  CAS  Google Scholar 

  36. J.M. Chong, J.S. Rubin, A. Üren, and D.W. Speicher, Disulfide bond assignments of secreted frizzled-related protein-1 provide insights about frizzled homology, netrin modules, J Biol Chem 277, 5134–5144 (2002).

    Article  PubMed  CAS  Google Scholar 

  37. J. Stetefeld, M. Jenny, T. Schulthess, R. Landwehr, B. Schumacher, S. Frank, M.A. Ruegg, J. Engel, and R.A. Kammerer, The laminin-binding domain of agrin is related to N-TIMP-1, Nat Struct Biol 8, 705–709 (2001).

    Article  PubMed  CAS  Google Scholar 

  38. E. Liepinsh, L. Banyai, G. Pintacuda, M. Trexler, L. Patthy, and G. Otting, NMR structure of the netrin-like domain (NTR) of human type I procollagen C-proteinase enhancer defines structural consensus of NTR domains and assesses potential proteinase inhibitory activity and ligand binding, J Biol Chem 278, 25982–25989 (2003).

    Article  PubMed  CAS  Google Scholar 

  39. K. Dolmer, and L. Sottrup-Jensen, Disulfide bridges in human complement component C3b, FEBS Lett 315, 85–90 (1993).

    Article  PubMed  CAS  Google Scholar 

  40. P.J. Low, R. Ai, and R.T. Ogata, Active sites in complement components C5 and C3 identified by proximity to indels in the C3/4/5 protein family, J Immunol 162, 6580–6588 (1999).

    PubMed  CAS  Google Scholar 

  41. A. Sandoval, R. Ai, J.M. Ostresh, and R.T. Ogata, Distal recognition site for classical pathway convertase located in the C345C/netrin module of complement component C5, J Immunol 165, 1066–1073 (2000).

    PubMed  CAS  Google Scholar 

  42. D. Candinas, B.A. Lesnikoski, S.C. Robson, T. Miyatake, S.M. Scesney, H.C. Marsh Jr, U.S. Ryan, A.P Dalmasso., W.W. Hancock, and F.H. Bach, Effect of repetitive high-dose treatment with soluble complement receptor type 1 and cobra venom factor on discordant xenograft survival, Transplantation 15, 336–342 (1996).

    Article  Google Scholar 

  43. F.J. Vriesendorp, R.E. Flynn, M.A. Pappolla, Soluble complement receptor 1 (sCR1) is not as effective as cobra venom factor in the treatment of experimental allergic neuritis, Int. J Neurosci 92, 287–298 (1997).

    Article  PubMed  CAS  Google Scholar 

  44. C.G. Cochrane, H.J. Müller-Eberhard, and B.S. Aikin, Depletion of plasma complement in vivo by a protein of cobra venom: its effect on various immunologic reactions, J Immunol 105, 55–69 (1970).

    PubMed  CAS  Google Scholar 

  45. R.A. Jr Nelson, A new concept of immunosuppression in hypersensitivity reactions and in transplantation immunity, Surv Ophthalmol 11(4), 498–505 (1966).

    PubMed  Google Scholar 

  46. C.W. Vogel in: Handbook of Natural Toxins edited by A.T. Tu (Marcel Dekker Inc., New York, 1991), vol. 5, pp. 147–188.

    Google Scholar 

  47. Younger, J.G., et al., Systemic and lung physiological changes in rats after intravascular activation of complement. J Appl Physiol 90, 2289–2295 (2001).

    PubMed  CAS  Google Scholar 

  48. R.A. Wetsel, and W.P. Kolb, Expression of C5a-like biological activities by the fifth component of human complement (C5) upon limited digestion with noncomplement enzymes without release of polypeptide fragments, J Exp Med 157, 2029–2048 (1983).

    Article  PubMed  CAS  Google Scholar 

  49. Y. Wang, S.A. Rollins, J.A. Madri, and L.A. Matis, Anti-C5 monoclonal antibody therapy prevents collagen-induced arthritis and ameliorates established disease, Proc Natl Acad Sci USA 92(19), 8955–8959 (1995).

    Article  PubMed  CAS  Google Scholar 

  50. J.E. Figueroa and P. Densen, Infectious diseases associated with complement deficiencies, Clin Microbiol Rev 4, 359–395 (1991).

    PubMed  CAS  Google Scholar 

  51. M.C. Carroll, The role of complement and complement receptors in induction and regulation of immunity, Ann Rev Immunol 16, 545–568 (1998).

    Article  CAS  Google Scholar 

  52. D. Mastellos, and J.D. Lambris, Complement: more than a “guard” against invading pathogens? Trends Immunol 23, 485–491 (2002).

    Article  PubMed  CAS  Google Scholar 

  53. M. Bruggemann, G. Winter, H. Waldmann, and M.S. Neuberger, The immunogenicity of chimeric antibodies, J Exp Med 170, 2153–2157 (1989).

    Article  PubMed  CAS  Google Scholar 

  54. Riechmann L, Clark M, Waldmann H, Winter G. Reshaping human antibodies for therapy, Nature 332, 323–237 (1988).

    Article  PubMed  CAS  Google Scholar 

  55. G. Hale, M.J. Dyer, M.R. Clark, J.M. Phillips, R. Marcus, L. Riechmann, G. Winter, and H. Waldmann, Remission induction in non-Hodgkin lymphoma with reshaped human monoclonal antibody CAMPATH-1H, Lancet 2, 1394–1399 (1988).

    Article  PubMed  CAS  Google Scholar 

  56. T.C. Thomas, S.A. Rollins, and R.P. Rother, M.A. Giannoni, S.L. Hartman, E.A. Elliott, S.H. Nye, L.A. Matis, S.P. Squinto, and M.J. Evans, Inhibition of complement activity by humanized anti-C5 antibody and single chain Fv, Mol Immunol 33, 1389–1401 (1997).

    Article  Google Scholar 

  57. J.C. Fitch, S. Rollins, L. Matis, B. Alford, S. Aranki, C.D. Collard, M. Dewar, J. Elefteriades, R. Hines, G. Kopf, P. Kraker, L. Li, R. O’Hara, C. Rinder, H. Rinder, R. Shaw, B. Smith, G. Stahl, S.K. Shernan, Pharmacology and biological efficacy of a recombinant, humanized, single-chain antibody C5 complement inhibitor in patients undergoing coronary artery bypass graft surgery with cardiopulmonary bypass. Circulation 100, 2499–2506 (1999).

    PubMed  CAS  Google Scholar 

  58. A. Wright, and S.L. Morrison, Effect of C2-associated carbohydrate structure on Ig effector function: studies with chimeric mouse-human IgG1 antibodies in glycosylation mutants of Chinese hamster ovary cells, J Immunol 1607, 33393–33402 (1998).

    Google Scholar 

  59. X. Dong, W.J. Storkus, and R.D. Salter, Binding and uptake of agalactosyl IgG by mannose receptor on macrophages and dendritic cells, J Immunol 16310, 5427–5434 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Spillner, E., Kölln, J., Bredehorst, R. (2006). Inactivation of Complement by Recombinant Human C3 Derivatives. In: Lambris, J.D. (eds) Current Topics in Complement. Advances in Experimental Medicine and Biology, vol 586. Springer, Boston, MA. https://doi.org/10.1007/0-387-34134-X_23

Download citation

Publish with us

Policies and ethics