Skip to main content

Liver Regeneration: A Link to Inflammation through Complement

  • Conference paper
Current Topics in Complement

4. Conclusion

We have emphasized here the similarities that exist between the inflammatory and regenerative responses in terms of mediators involved, providing evidence that liver regeneration includes an inflammatory reaction. Particular emphasis has been placed on the role of complement, an early and fundamental player in innate immunity, in regeneration of the liver. During the inflammatory response there are multiple interactions existing between several complement proteins and the network of pleiotropic mediators, the cytokines. Through cytokine functions, complement is involved in precise and balanced regulation of innate and adaptive immune responses and the control of cellular growth and apoptosis. Additionally, through cytokine signaling and other, more direct processes, complement is now known to be vital for proper liver regeneration. Thus, the interactions between various complement proteins and cytokines are essential for both immune responses and tissue regeneration, and provide a new link in the expanding chain connecting these two biological phenomena.

These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. J. M. Crawford, The liver and biliary tract, in: Pathologic basis of disease, edited by R.S. Cotran, V. Kumar, and T. Collins (W.B. Saunders, Philadelphia, 1994), pp. 831–896.

    Google Scholar 

  2. I. R. Wanless, Physioanatomic considerations, in: Schiff’s Diseases of the liver, edited by E.R. Schiff, M.F. Sorrell, and W.C. Maddrey (Lippincott-Raven, Philadelphia, 1999), pp. 3–38.

    Google Scholar 

  3. K. J. Isselbacher and D. K. Podolsky, Biologic and clinical approaches to liver disease, in: Harrison’s principles of internal medicine, edited by J.D. Wilson, E. Braunwald, K.J. Isselbacher, R.G. Petersdorf, J.B. Martin, A.S. Fauci, and R.K. Root (McGraw-Hill Inc., New York, 1991), pp. 1301–1302.

    Google Scholar 

  4. R. Taub, Liver regeneration: from myth to mechanism, Nat Rev Mol Cell Biol 5(10), 836–847 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. G.M. Higgins and R.M. Anderson, Experimental pathology of the liver: I. restoration of the liver of the white rat following partial surgical removal., Arch Pathol 12 186–202 (1931).

    Google Scholar 

  6. M.M. Markiewski, R.A. DeAngelis, and J.D. Lambris, Liver inflammation and regeneration: two distinct biological phenomena or parallel pathophysiologic processes? Mol Immunol. 43(1–2), 45–56 (2006).

    Article  PubMed  CAS  Google Scholar 

  7. N. Fausto, Liver regeneration, in: The liver: biology and pathobiology., edited by I.M. Arias, J.L. Boyer, F.V. Chisari, N. Fausto, D. Schachter, and D.A. Shafritz (Lippincott Williams & Wilkins, Philadelphia, 2001), pp. 591–610.

    Google Scholar 

  8. R.P. Cornell, Restriction of gut-derived endotoxin impairs DNA synthesis for liver regeneration, Am J Physiol 249(5 Pt 2), R563–R569 (1985).

    PubMed  CAS  Google Scholar 

  9. R.P. Cornell, Gut-derived endotoxin elicits hepatotrophic factor secretion for liver regeneration, Am J Physiol 249(5 Pt 2), R551–R562 (1985).

    PubMed  CAS  Google Scholar 

  10. R.P. Cornell, B.L. Liljequist, and K.F. Bartizal, Depressed liver regeneration after partial hepatectomy of germ-free, athymic and lipopolysaccharide-resistant mice, Hepatology 11(6), 916–922 (1990).

    PubMed  CAS  Google Scholar 

  11. R. Taub, L.E. Greenbaum, and Y. Peng, Transcriptional regulatory signals define cytokine-dependent and-independent pathways in liver regeneration, Semin Liver Dis 19(2), 117–127 (1999).

    Article  PubMed  CAS  Google Scholar 

  12. D.E. Cressman, R.H. Diamond, and R. Taub, Rapid activation of the Stat3 transcription complex in liver regeneration, Hepatology 21(5), 1443–1449 (1995).

    Article  PubMed  CAS  Google Scholar 

  13. D.E. Cressman, L.E. Greenbaum, R.A. DeAngelis, G. Ciliberto, E.E. Furth, V. Poli, and R. Taub, Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice, Science 274(5291), 1379–1383 (1996).

    Article  PubMed  CAS  Google Scholar 

  14. Y. Yamada, I. Kirillova, J.J. Peschon, and N. Fausto, Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor, Proc Natl Acad Sci USA 94(4), 1441–1446 (1997).

    Article  PubMed  CAS  Google Scholar 

  15. Y. Yamada and N. Fausto, Deficient liver regeneration after carbon tetrachloride injury in mice lacking type 1 but not type 2 tumor necrosis factor receptor, Am J Pathol 152(6), 1577–1589 (1998).

    PubMed  CAS  Google Scholar 

  16. Y. Yamada, E.M. Webber, I. Kirillova, J.J. Peschon, and N. Fausto, Analysis of liver regeneration in mice lacking type 1 or type 2 tumor necrosis factor receptor: requirement for type 1 but not type 2 receptor, Hepatology 28(4), 959–970 (1998).

    Article  PubMed  CAS  Google Scholar 

  17. T. Sakamoto, Z. Liu, N. Murase, T. Ezure, S. Yokomuro, V. Poli, and A.J. Demetris, Mitosis and apoptosis in the liver of interleukin-6-deficient mice after partial hepatectomy, Hepatology 29(2), 403–411 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. N. Fausto and J.S. Campbell, The role of hepatocytes and oval cells in liver regeneration and repopulation, Mech Dev 120(1), 117–130 (2003).

    Article  PubMed  CAS  Google Scholar 

  19. D.C. Guttridge, C. Albanese, J.Y. Reuther, R.G. Pestell, and A.S. Baldwin Jr., NFkappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1, Mol Cell Biol 19(8), 5785–5799 (1999).

    PubMed  CAS  Google Scholar 

  20. M. Hinz, D. Krappmann, A. Eichten, A. Heder, C. Scheidereit, and M. Strauss, NF-kappaB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition, Mol Cell Biol 19(4), 2690–2698 (1999).

    PubMed  CAS  Google Scholar 

  21. D.E. Levy and C.K. Lee, What does Stat3 do? J Clin Invest 109(9), 1143–1148 (2002).

    Article  PubMed  CAS  Google Scholar 

  22. H. Talarmin, C. Rescan, S. Cariou, D. Glaise, G. Zanninelli, M. Bilodeau, P. Loyer, C. Guguen-Guillouzo, and G. Baffet, The mitogen-activated protein kinase kinase/extracellular signal-regulated kinase cascade activation is a key signaling pathway involved in the regulation of G(1) phase progression in proliferating hepatocytes, Mol Cell Biol 19(9), 6003–6011 (1999).

    PubMed  CAS  Google Scholar 

  23. A. Blindenbacher, X. Wang, I. Langer, R. Savino, L. Terracciano, and M.H. Heim, Interleukin 6 is important for survival after partial hepatectomy in mice, Hepatology 38(3), 674–682 (2003).

    Article  PubMed  CAS  Google Scholar 

  24. T. Wuestefeld, C. Klein, K.L. Streetz, U. Betz, J. Lauber, J. Buer, M.P. Manns, W. Muller, and C. Trautwein, Interleukin-6/glycoprotein 130-dependent pathways are protective during liver regeneration, J Biol Chem 278(13), 11281–11288 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. C.R. Webster and M.S. Anwer, Phosphoinositide 3-kinase, but not mitogenactivated protein kinase, pathway is involved in hepatocyte growth factor-mediated protection against bile acid-induced apoptosis in cultured rat hepatocytes, Hepatology 33(3), 608–615 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. T. Alonzi, G. Middleton, S. Wyatt, V. Buchman, U.A. Betz, W. Muller, P. Musiani, V. Poli, and A.M. Davies, Role of STAT3 and PI 3-kinase/Akt in mediating the survival actions of cytokines on sensory neurons, Mol Cell Neurosci 18(3), 270–282 (2001).

    Article  PubMed  CAS  Google Scholar 

  27. Y. Iimuro, T. Nishiura, C. Hellerbrand, K.E. Behrns, R. Schoonhoven, J.W. Grisham, and D.A. Brenner, NFkappaB prevents apoptosis and liver dysfunction during liver regeneration, J Clin Invest 101(4), 802–811 (1998).

    PubMed  CAS  Google Scholar 

  28. J. Plumpe, N.P. Malek, C.T. Bock, T. Rakemann, M.P. Manns, and C. Trautwein, NF-kappaB determines between apoptosis and proliferation in hepatocytes during liver regeneration, Am J Physiol Gastrointest Liver Physiol 278(1), G173–G183 (2000).

    PubMed  CAS  Google Scholar 

  29. O. Micheau, S. Lens, O. Gaide, K. Alevizopoulos, and J. Tschopp, NF-kappaB signals induce the expression of c-FLIP, Mol Cell Biol 21(16), 5299–5305 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. C.Y. Wang, M.W. Mayo, R.G. Korneluk, D.V. Goeddel, and A.S. Baldwin Jr., NFkappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation, Science 281(5383), 1680–1683 (1998).

    Article  PubMed  CAS  Google Scholar 

  31. E. Hatano, B.L. Bennett, A.M. Manning, T. Qian, J.J. Lemasters, and D.A. Brenner, NF-kappaB stimulates inducible nitric oxide synthase to protect mouse hepatocytes from TNF-alpha-and Fas-mediated apoptosis, Gastroenterology 120(5), 1251–1262 (2001).

    Article  PubMed  CAS  Google Scholar 

  32. M.J. Diaz-Guerra, M. Velasco, P. Martin-Sanz, and L. Bosca, Nuclear factor kappaB is required for the transcriptional control of type II NO synthase in regenerating liver, Biochem J 326 (Pt 3) 791–797 (1997).

    PubMed  CAS  Google Scholar 

  33. A. Krikos, C.D. Laherty, and V.M. Dixit, Transcriptional activation of the tumor necrosis factor alpha-inducible zinc finger protein, A20, is mediated by kappa B elements, J Biol Chem 267(25), 17971–17976 (1992).

    PubMed  CAS  Google Scholar 

  34. A.W. Opipari Jr., H.M. Hu, R. Yabkowitz, and V.M. Dixit, The A20 zinc finger protein protects cells from tumor necrosis factor cytotoxicity, J Biol Chem 267(18), 12424–12427 (1992).

    PubMed  CAS  Google Scholar 

  35. S.K. Manna, H.J. Zhang, T. Yan, L.W. Oberley, and B.B. Aggarwal, Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-kappaB and activated protein-1, J Biol Chem 273(21), 13245–13254 (1998).

    Article  PubMed  CAS  Google Scholar 

  36. C. Reinhard, B. Shamoon, V. Shyamala, and L.T. Williams, Tumor necrosis factor alpha-induced activation of c-jun N-terminal kinase is mediated by TRAF2, EMBO J 16(5), 1080–1092 (1997).

    Article  PubMed  CAS  Google Scholar 

  37. D.J. Van Antwerp, S. J. Martin, T. Kafri, D.R. Green, and I.M. Verma, Suppression of TNF-alpha-induced apoptosis by NF-kappaB, Science 274(5288), 787–789 (1996).

    Article  PubMed  Google Scholar 

  38. C.Y. Wang, M.W. Mayo, and A.S. Baldwin Jr., TNF-and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB, Science 274(5288), 784–787 (1996).

    Article  PubMed  CAS  Google Scholar 

  39. A.A. Beg and D. Baltimore, An essential role for NF-kappaB in preventing TNFalpha-induced cell death, Science 274(5288), 782–784 (1996).

    Article  PubMed  CAS  Google Scholar 

  40. Y. Xu, S. Bialik, B.E. Jones, Y. Iimuro, R.N. Kitsis, A. Srinivasan, D.A. Brenner, and M.J. Czaja, NF-kappaB inactivation converts a hepatocyte cell line TNF-alpha response from proliferation to apoptosis, Am J Physiol 275(4 Pt 1), C1058–C1066 (1998).

    PubMed  CAS  Google Scholar 

  41. Z.G. Liu, H. Hsu, D.V. Goeddel, and M. Karin, Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death, Cell 87(3), 565–576 (1996).

    Article  PubMed  CAS  Google Scholar 

  42. C.A. Janeway Jr., P. Travers, M. Walport, and M.J. Shlomchik, Innate immunity, in Immunobiology, edited by C.A. Janeway Jr., P. Travers, M. Walport, and M.J. Shlomchik (Garland Publishing, New York, 2005), pp. 37–100.

    Google Scholar 

  43. J.S. Pober and R.S. Cotran, The role of endothelial cells in inflammation, Transplantation 50(4), 537–544 (1990).

    Article  PubMed  CAS  Google Scholar 

  44. M.P. Bevilacqua, Endothelial-leukocyte adhesion molecules, Annu Rev Immunol 11 767–11804 (1993).

    Article  PubMed  CAS  Google Scholar 

  45. C.A. Dinarello, Biologic basis for interleukin-1 in disease, Blood 87(6), 2095–2147 (1996).

    PubMed  CAS  Google Scholar 

  46. B. Beutler, TNF, immunity and inflammatory disease: lessons of the past decade, J.Investig.Med. 43(3), 227–235 (1995).

    PubMed  CAS  Google Scholar 

  47. S.W. Vukajlovich, J. Hoffman, and D.C. Morrison, Activation of human serum complement by bacterial lipolysaccharides: structural requirements for antibody independent activation of the classical and alternative pathways, Mol Immunol 24 319–331 (1987).

    Article  PubMed  CAS  Google Scholar 

  48. A. Erdei, K. Kerekes, and I. Pecht, Role of C3a and C5a in the activation of mast cells, Exp Clin Immunogenet 14(1), 16–18 (1997).

    PubMed  CAS  Google Scholar 

  49. M.P. Dierich, A. Erdei, H. Huemer, A. Petzer, R. Stauder, T.F. Schulz, and J. Gergely, Involvement of complement in B-cell, T-cell and monocyte/macrophage activation, Immunol Lett 14 235–242 (1987).

    Article  PubMed  CAS  Google Scholar 

  50. A.P. Prodeus, X. Zhou, M. Maurer, S.J. Galli, and M.C. Carroll, Impaired mast cell-dependent natural immunity in complement C3-deficient mice, Nature 390(6656), 172–175 (1997).

    Article  PubMed  CAS  Google Scholar 

  51. J.M. Cavaillon, C. Fitting, and N. Haeffner-Cavaillon, Recombinant C5a enhances interleukin 1 and tumor necrosis factor release by lipopolysaccharide-stimulated monocytes and macrophages, Eur J Immunol 20(2), 253–257 (1990).

    PubMed  CAS  Google Scholar 

  52. S. Okusawa, C.A. Dinarello, K.B. Yancey, S. Endres, T.J. Lawley, M.M. Frank, J.F. Burke, and J.A. Gelfand, C5a induction of human interleukin 1: synergistic effect with endotoxin or interferon-gamma, J Immunol 139(8), 2635–2640 (1987).

    PubMed  CAS  Google Scholar 

  53. S. Okusawa, K.B. Yancey, J.W. van der Meer, S. Endres, G. Lonnemann, K. Hefter, M.M. Frank, J.F. Burke, C.A. Dinarello, and J.A. Gelfand, C5a stimulates secretion of tumor necrosis factor from human mononuclear cells in vitro. Comparison with secretion of interleukin 1 beta and interleukin 1 alpha, J Exp Med 168(1), 443–448 (1988).

    Article  PubMed  CAS  Google Scholar 

  54. R. Schindler, J.A. Gelfand, and C.A. Dinarello, Recombinant C5a stimulates transcription rather than translation of interleukin-1 (IL-1) and tumor necrosis factor: translational signal provided by lipopolysaccharide or IL-1 itself, Blood 76(8), 1631–1638 (1990).

    PubMed  CAS  Google Scholar 

  55. T. Takabayashi, E. Vannier, B.D. Clark, N.H. Margolis, C.A. Dinarello, J.F. Burke, and J.A. Gelfand, A new biologic role for C3a and C3a desArg: regulation of TNF-alpha and IL-1 beta synthesis, J Immunol 156(9), 3455–3460 (1996).

    PubMed  CAS  Google Scholar 

  56. W.H. Fischer, M.A. Jagels, and T.E. Hugli, Regulation of IL-6 synthesis in human peripheral blood mononuclear cells by C3a and C3a(desArg), J Immunol 162(1), 453–459 (1999).

    PubMed  CAS  Google Scholar 

  57. H. Montz, K.C. Koch, R. Zierz, and O. Gotze, The role of C5a in interleukin-6 production induced by lipopolysaccharide or interleukin-1, Immunology 74(3), 373–379 (1991).

    PubMed  CAS  Google Scholar 

  58. C. Mack, K. Jungermann, O. Gotze, and H.L. Schieferdecker, Anaphylatoxin C5a actions in rat liver: synergistic enhancement by C5a of lipopolysaccharidedependent alpha(2)-macroglobulin gene expression in hepatocytes via IL-6 release from Kupffer cells, J Immunol 167(7), 3972–3979 (2001).

    PubMed  CAS  Google Scholar 

  59. N.C. Riedemann, R.-F. Guo, T.J. Hollmann, H. Gao, T.A. Neff, J.S. Reuben, C.L. Speyer, J.V. Sarma, R.A. Wetsel, F.S. Zetoune, and P.A. Ward, Regulatory role of C5a in LPS-induced IL-6 production by neutrophils during sepsis, FASEB J 18(2), 370–372 (2004).

    PubMed  CAS  Google Scholar 

  60. R.M. Clancy, C.A. Dahinden, and T.E. Hugli, Complement-mediated arachidonate metabolism, Prog Biochem Pharmacol 20 120–131 (1985).

    PubMed  CAS  Google Scholar 

  61. N. Beraza, J.M. Marques, E. Martinez-Anso, M. Iniguez, J. Prieto, and M. Bustos, Interplay among cardiotrophin-1, prostaglandins, and vascular endothelial growth factor in rat liver regeneration, Hepatology 41(3), 460–469 (2005).

    Article  PubMed  CAS  Google Scholar 

  62. D.A. Rudnick, D.H. Perlmutter, and L.J. Muglia, Prostaglandins are required for CREB activation and cellular proliferation during liver regeneration, Proc Natl Acad Sci USA 98(15), 8885–8890 (2001).

    Article  PubMed  CAS  Google Scholar 

  63. A.R. Currier, G. Sabla, S. Locaputo, H. Melin-Aldana, J.L. Degen, and J.A. Bezerra, Plasminogen directs the pleiotropic effects of uPA in liver injury and repair, Am J Physiol Gastrointest Liver Physiol 284(3), G508–G515 (2003).

    PubMed  CAS  Google Scholar 

  64. P. Pediaditakis, J.C. Lopez-Talavera, B. Petersen, S.P. Monga, and G.K. Michalopoulos, The processing and utilization of hepatocyte growth factor/scatter factor following partial hepatectomy in the rat, Hepatology 34(4 Pt 1), 688–693 (2001).

    Article  PubMed  CAS  Google Scholar 

  65. T. Collins, Acute and Chronic Inflammation, in: Pathologic basis of disease, edited by R.S. Cotran, V. Kumar, and T. Collins (W.B. Saunders, Philadelphia, 1999), pp. 50–88.

    Google Scholar 

  66. M. Shimizu, A. Hara, M. Okuno, H. Matsuno, K. Okada, S. Ueshima, O. Matsuo, M. Niwa, K. Akita, Y. Yamada, N. Yoshimi, T. Uematsu, S. Kojima, S.L. Friedman, H. Moriwaki, and H. Mori, Mechanism of retarded liver regeneration in plasminogen activator-deficient mice: impaired activation of hepatocyte growth factor after Fas-mediated massive hepatic apoptosis, Hepatology 33(3), 569–576 (2001).

    Article  PubMed  CAS  Google Scholar 

  67. J. Okano, G. Shiota, K. Matsumoto, S. Yasui, A. Kurimasa, I. Hisatome, P. Steinberg, and Y. Murawaki, Hepatocyte growth factor exerts a proliferative effect on oval cells through the PI3K/AKT signaling pathway, Biochem Biophys Res Commun 309(2), 298–304 (2003).

    Article  PubMed  CAS  Google Scholar 

  68. C.G. Huh, V.M. Factor, A. Sanchez, K. Uchida, E.A. Conner, and S.S. Thorgeirsson, Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair, Proc Natl Acad Sci USA 101(13), 4477–4482 (2004).

    Article  PubMed  CAS  Google Scholar 

  69. Y. Takeda, N. Shiobara, A.R. Saniabadi, M. Adachi, and K. Hiraishi, Adhesion dependent release of hepatocyte growth factor and interleukin-1 receptor antagonist from human blood granulocytes and monocytes: evidence for the involvement of plasma IgG, complement C3 and beta2 integrin, Inflamm Res 53(7), 277–283 (2004).

    Article  PubMed  CAS  Google Scholar 

  70. N. Shushakova, G. Eden, M. Dangers, J. Zwirner, J. Menne, F. Gueler, F.C. Luft, H. Haller, and I. Dumler, The urokinase/urokinase receptor system mediates the IgG immune complex-induced inflammation in lung, J Immunol 175(6), 4060–4068 (2005).

    PubMed  CAS  Google Scholar 

  71. T.A. Drixler, J.M. Vogten, M.F. Gebbink, P. Carmeliet, E.E. Voest, and R. Borel, Plasminogen mediates liver regeneration and angiogenesis after experimental partial hepatectomy, Br J Surg 90(11), 1384–1390 (2003).

    Article  PubMed  CAS  Google Scholar 

  72. F.F. Mohammed, C.J. Pennington, Z. Kassiri, J.S. Rubin, P.D. Soloway, U. Ruther, D.R. Edwards, and R. Khokha, Metalloproteinase inhibitor TIMP-1 affects hepatocyte cell cycle via HGF activation in murine liver regeneration, Hepatology 41(4), 857–867 (2005).

    Article  PubMed  CAS  Google Scholar 

  73. R.A. Black, C.T. Rauch, C.J. Kozlosky, J.J. Peschon, J.L. Slack, M.F. Wolfson, B.J. Castner, K.L. Stocking, P. Reddy, S. Srinivasan, N. Nelson, N. Boiani, K.A. Schooley, M. Gerhart, R. Davis, J.N. Fitzner, R.S. Johnson, R.J. Paxton, C.J. March, and D.P. Cerretti, A metalloproteinase disintegrin that releases tumournecrosis factor-alpha from cells, Nature 385(6618), 729–733 (1997).

    Article  PubMed  CAS  Google Scholar 

  74. F.F. Mohammed, D.S. Smookler, S.E. Taylor, B. Fingleton, Z. Kassiri, O.H. Sanchez, J.L. English, L.M. Matrisian, B. Au, W.C. Yeh, and R. Khokha, Abnormal TNF activity in Timp3-/- mice leads to chronic hepatic inflammation and failure of liver regeneration, Nat Genet 36(9), 969–977 (2004).

    Article  PubMed  CAS  Google Scholar 

  75. E. Taniguchi, S. Sakisaka, K. Matsuo, K. Tanikawa, and M. Sata, Expression and role of vascular endothelial growth factor in liver regeneration after partial hepatectomy in rats, J Histochem Cytochem 49(1), 121–130 (2001).

    PubMed  CAS  Google Scholar 

  76. M. Ehrbar, V. G. Djonov, C. Schnell, S.A. Tschanz, G. Martiny-Baron, U. Schenk, J. Wood, P.H. Burri, J.A. Hubbell, and A.H. Zisch, Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth, Circ Res 94(8), 1124–1132 (2004).

    Article  PubMed  CAS  Google Scholar 

  77. G. Bergers, R. Brekken, G. McMahon, T.H. Vu, T. Itoh, K. Tamaki, K. Tanzawa, P. Thorpe, S. Itohara, Z. Werb, and D. Hanahan, Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis, Nat Cell Biol 2(10), 737–744 (2000).

    Article  PubMed  CAS  Google Scholar 

  78. E.A. Albrecht, A.M. Chinnaiyan, S. Varambally, C. Kumar-Sinha, T.R. Barrette, J.V. Sarma, and P.A. Ward, C5a-induced gene expression in human umbilical vein endothelial cells, Am J Pathol 164(3), 849–859 (2004).

    PubMed  CAS  Google Scholar 

  79. M.B. Bansal, K. Kovalovich, R. Gupta, W. Li, A. Agarwal, B. Radbill, C.E. Alvarez, R. Safadi, M.I. Fiel, S.L. Friedman, and R.A. Taub, Interleukin-6 protects hepatocytes from CCl4-mediated necrosis and apoptosis in mice by reducing MMP-2 expression, J Hepatol 42(4), 548–556 (2005).

    Article  PubMed  CAS  Google Scholar 

  80. D.V. Rozanov, A.Y. Savinov, V.S. Golubkov, T.I. Postnova, A. Remacle, S. Tomlinson, and A.Y. Strongin, Cellular membrane type-1 matrix metalloproteinase (MT1-MMP) cleaves C3b, an essential component of the complement system, J Biol Chem 279(45), 46551–46557 (2004).

    Article  PubMed  CAS  Google Scholar 

  81. D.V. Rozanov, S. Sikora, A. Godzik, T.I. Postnova, V. Golubkov, A. Savinov, S. Tomlinson, and A.Y. Strongin, Non-proteolytic, receptor/ligand interactions associate cellular membrane type-1 matrix metalloproteinase with the complement component C1q, J Biol Chem 279(48), 50321–50328 (2004).

    Article  PubMed  CAS  Google Scholar 

  82. H. Sakiyama, N. Inaba, T. Toyoguchi, Y. Okada, M. Matsumoto, H. Moriya, and H. Ohtsu, Immunolocalization of complement C1s and matrix metalloproteinase 9 (92-kDa gelatinase/type IV collagenase) in the primary ossification center of the human femur, Cell Tissue Res 277(2), 239–245 (1994).

    PubMed  CAS  Google Scholar 

  83. A. Martinez, H.R. Oh, E.J. Unsworth, C. Bregonzio, J.M. Saavedra, W.G. Stetler-Stevenson, and F. Cuttitta, Matrix metalloproteinase-2 cleavage of adrenomedullin produces a vasoconstrictor out of a vasodilator, Biochem J 383(Pt. 3), 413–418 (2004).

    PubMed  CAS  Google Scholar 

  84. N.S. Fedarko, A. Jain, A. Karadag, and L.W. Fisher, Three small integrin binding ligand N-linked glycoproteins (SIBLINGs) bind and activate specific matrix metalloproteinases, FASEB J 18(6), 734–736 (2004).

    PubMed  CAS  Google Scholar 

  85. C.A. Janeway Jr., P. Travers, M. Walport, and M.J. Shlomchik, Innate immunity, in: Immunobiology, edited by C.A. Janeway Jr., P. Travers, M. Walport, and M.J. Shlomchik (Garland Publishing, New York, 2001), pp. 35–292.

    Google Scholar 

  86. A. Burke-Gaffney, K. Blease, A. Hartnell, and P.G. Hellewell, TNF-alpha potentiates C5a-stimulated eosinophil adhesion to human bronchial epithelial cells: a role for alpha 5 beta 1 integrin, J Immunol 168(3), 1380–1388 (2002).

    PubMed  CAS  Google Scholar 

  87. R.G. DiScipio, P.J. Daffern, M.A. Jagels, D.H. Broide, and P. Sriramarao, A comparison of C3a and C5a-mediated stable adhesion of rolling eosinophils in postcapillary venules and transendothelial migration in vitro and in vivo, J Immunol 162(2), 1127–1136 (1999).

    PubMed  CAS  Google Scholar 

  88. N. Selzner, M. Selzner, B. Odermatt, Y. Tian, N. van Rooijen, and P.A. Clavien, ICAM-1 triggers liver regeneration through leukocyte recruitment and Kupffer cell-dependent release of TNF-alpha/IL-6 in mice, Gastroenterology 124(3), 692–700 (2003).

    Article  PubMed  CAS  Google Scholar 

  89. S. Edwards, P.F. Lalor, G.B. Nash, G.E. Rainger, and D.H. Adams, Lymphocyte traffic through sinusoidal endothelial cells is regulated by hepatocytes, Hepatology 41(3), 451–459 (2005).

    Article  PubMed  Google Scholar 

  90. M. Shimada, T. Matsumata, A. Taketomi, K. Shirabe, K. Yamamoto, K. Takenaka, and K. Sugimachi, The role of interleukin-6, interleukin-16, tumor necrosis factoralpha and endotoxin in hepatic resection, Hepatogastroenterology 42(5), 691–697 (1995).

    PubMed  CAS  Google Scholar 

  91. A. Yamada, S. Kawata, S. Tamura, S. Kiso, S. Higashiyama, K. Umeshita, M. Sakon, N. Taniguchi, M. Monden, and Y. Matsuzawa, Plasma heparin-binding EGF-like growth factor levels in patients after partial hepatectomy as determined with an enzyme-linked immunosorbent assay, Biochem Biophys Res Commun 246(3), 783–787 (1998).

    Article  PubMed  CAS  Google Scholar 

  92. C.W. Strey, M.S. Winters, M.M. Markiewski, and J.D. Lambris, Partial hepatectomy induced liver proteome changes in mice, Proteomics (2004).

    Google Scholar 

  93. R. McCoy, D.L. Haviland, E.P. Molmenti, T. Ziambaras, R.A. Wetsel, and D.H. Perlmutter, N-formylpeptide and complement C5a receptors are expressed in liver cells and mediate hepatic acute phase gene regulation, J Exp Med 182(1), 207–217 (1995).

    Article  PubMed  CAS  Google Scholar 

  94. C. Mack, K. Jungermann, O. Gotze, and H.L. Schieferdecker, Anaphylatoxin C5a actions in rat liver: synergistic enhancement by C5a of lipopolysaccharidedependent alpha(2)-macroglobulin gene expression in hepatocytes via IL-6 release from Kupffer cells, J Immunol 167(7), 3972–3979 (2001).

    PubMed  CAS  Google Scholar 

  95. M.A. Exley and M.J. Koziel, To be or not to be NKT: natural killer T cells in the liver, Hepatology 40(5), 1033–1040 (2004).

    Article  PubMed  Google Scholar 

  96. S.A. Porcelli and R.L. Modlin, The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids, Annu Rev Immunol 17 297–329 (1999).

    Article  PubMed  CAS  Google Scholar 

  97. A.R. Castano, S. Tangri, J.E. Miller, H.R. Holcombe, M.R. Jackson, W.D. Huse, M. Kronenberg, and P.A. Peterson, Peptide binding and presentation by mouse CD1, Science 269(5221), 223–226 (1995).

    Article  PubMed  CAS  Google Scholar 

  98. T. Kawano, J. Cui, Y. Koezuka, I. Toura, Y. Kaneko, K. Motoki, H. Ueno, R. Nakagawa, H. Sato, E. Kondo, H. Koseki, and M. Taniguchi, CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides, Science 278(5343), 1626–1629 (1997).

    Article  PubMed  CAS  Google Scholar 

  99. A. Bendelac, O. Lantz, M.E. Quimby, J.W. Yewdell, J.R. Bennink, and R.R. Brutkiewicz, CD1 recognition by mouse NK1+ T lymphocytes, Science 268(5212), 863–865 (1995).

    Article  PubMed  CAS  Google Scholar 

  100. M. Exley, J. Garcia, S.P. Balk, and S. Porcelli, Requirements for CD1d recognition by human invariant Valpha24+ CD4–CD8-T cells, J Exp Med 186(1), 109–120 (1997).

    Article  PubMed  CAS  Google Scholar 

  101. R.A. Campos, M. Szczepanik, A. Itakura, M. Akahira-Azuma, S. Sidobre, M. Kronenberg, and P.W. Askenase, Cutaneous immunization rapidly activates liver invariant Valpha14 NKT cells stimulating B-1 B cells to initiate T cell recruitment for elicitation of contact sensitivity, J Exp Med 198(12), 1785–1796 (2003).

    Article  PubMed  CAS  Google Scholar 

  102. M. Minagawa, H. Oya, S. Yamamoto, T. Shimizu, M. Bannai, H. Kawamura, K. Hatakeyama, and T. Abo, Intensive expansion of natural killer T cells in the early phase of hepatocyte regeneration after partial hepatectomy in mice and its association with sympathetic nerve activation, Hepatology 31(4), 907–915 (2001).

    Article  Google Scholar 

  103. H. Ito, K. Ando, T. Nakayama, M. Taniguchi, T. Ezaki, K. Saito, M. Takemura, K. Sekikawa, M. Imawari, M. Seishima, and H. Moriwaki, Role of Valpha 14 NKT cells in the development of impaired liver regeneration in vivo, Hepatology 38(5), 1116–1124 (2003).

    Article  PubMed  CAS  Google Scholar 

  104. K. Ando, T. Moriyama, L. G. Guidotti, S. Wirth, R. D. Schreiber, H.J. Schlicht, S.N. Huang, and F.V. Chisari, Mechanisms of class I restricted immunopathology. A transgenic mouse model of fulminant hepatitis, J Exp Med 178(5), 1541–1554 (1993).

    Article  PubMed  CAS  Google Scholar 

  105. N. Kadowaki, S. Antonenko, S. Ho, M.C. Rissoan, V. Soumelis, S.A. Porcelli, L.L. Lanier, and Y.J. Liu, Distinct cytokine profiles of neonatal natural killer T cells after expansion with subsets of dendritic cells, J Exp Med 193(10), 1221–1226 (2001).

    Article  PubMed  CAS  Google Scholar 

  106. M. Guiguet, M.F. Exilie Frigere, M.C. Dethieux, Y. Bidan, and G. Mack, Biosynthesis of the third component of complement in rat liver epithelial cell lines and its stimulation by effector molecules from cultured human mononuclear cells, In Vitro Cell Dev Biol 23(12), 821–829 (1987).

    PubMed  CAS  Google Scholar 

  107. M.M. Markiewski, D. Mastellos, R. Tudoran, R.A. DeAngelis, C.W. Strey, S. Franchini, R.A. Wetsel, A. Erdei, and J.D. Lambris, C3a and C3b activation products of the third component of complement (C3) are critical for normal liver recovery after toxic injury, J Immunol 173(2), 747–754 (2004).

    PubMed  CAS  Google Scholar 

  108. C.W. Strey, M. Markiewski, D. Mastellos, R. Tudoran, L.A. Spruce, L.E. Greenbaum, and J.D. Lambris, The proinflammatory mediators C3a and C5a are essential for liver regeneration, J Exp Med 198(6), 913–923 (2003).

    Article  PubMed  CAS  Google Scholar 

  109. D. Mastellos, J.C. Papadimitriou, S. Franchini, P.A. Tsonis, and J.D. Lambris, A novel role of complement: mice deficient in the fifth component of complement (C5) exhibit impaired liver regeneration, J Immunol 166(4), 2479–2486 (2001).

    PubMed  CAS  Google Scholar 

  110. R.A. DeAngelis, M.M. Markiewski, R. Taub, and J.D. Lambris. 2006. A high-fat diet impairs liver regeneration in C57BL/6 mice through overexpression of the NFkappa B inhibitor, I kappa B alpha. Hepatology. In press.

    Google Scholar 

  111. D. Mevorach, J.O. Mascarenhas, D. Gershov, and K.B. Elkon, Complementdependent clearance of apoptotic cells by human macrophages, J Exp Med 188(12), 2313–2320 (1998).

    Article  PubMed  CAS  Google Scholar 

  112. F. Takizawa, S. Tsuji, and S. Nagasawa, Enhancement of macrophage phagocytosis upon iC3b deposition on apoptotic cells, FEBS Lett 397(2–3), 269–272 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

DeAngelis, R.A., Markiewski, M.M., Lambris, J.D. (2006). Liver Regeneration: A Link to Inflammation through Complement. In: Lambris, J.D. (eds) Current Topics in Complement. Advances in Experimental Medicine and Biology, vol 586. Springer, Boston, MA. https://doi.org/10.1007/0-387-34134-X_2

Download citation

Publish with us

Policies and ethics