Skip to main content

The Adapter 3BP2: How It Plugs into Leukocyte Signaling

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((volume 584))

5. Conclusion and Perspectives

Genetic and biochemical analysis has revealed that cytoplasmic adapter proteins lacking intrinsic enzymatic activities have crucial roles in leukocyte biology. Despite the growing body of biochemical data to support the importance of 3BP2 in cells of the hematopoietic lineage, a clear picture of its biological function during immune and allergic responses has yet to emerge. Clearly, its exact function in the mechanisms regulating leukocyte activation, proliferation, and survival need to be clarified. This would require identification of specific cellular events and gene patterns regulated by 3BP2 in primary leukocytes. The interaction of 3BP2 with Abl kinases and receptor tyrosine kinases (RTKs) involved in hemapoietic cell activation and development should also be evaluated in the future. 3BP2 may couple to multiple cell surface receptors since the YENX motif that comprises the optimal binding sequence for the 3BP2 SH2 domain is present on diverse receptors and costimulatory molecules. Finally, the involvement of 3BP2 in the rare genetic bone disease cherubism raises the exciting possibility that 3BP2 acts as a “tumor suppressor” downstream from PTKs-coupled receptors in hematopoietic cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. R. Ren, B. J. Mayer, P. Cicchetti, and D. Baltimore, Identification of a ten-amino acid proline-rich SH3 binding site, Science 259(5098), 1157–1161 (1993).

    Article  PubMed  CAS  Google Scholar 

  2. M. Deckert, S. Tartare-Deckert, J. Hernandez, R. Rottapel, and A. Altman, Adaptor function for the Syk kinases-interacting protein 3BP2 in IL-2 gene activation, Immunity 9(5), 595–605 (1998).

    Article  PubMed  CAS  Google Scholar 

  3. S. M. Bell, M. Shaw, Y. S. Jou, R. M. Myers, and M. A. Knowles, Identification and characterization of the human homologue of SH3BP2, an SH3 binding domain protein within a common region of deletion at 4p16.3 involved in bladder cancer, Genomics 44, 163–170 (1997).

    Article  PubMed  CAS  Google Scholar 

  4. M. Zollino, C. Di Stefano, G. Zampino, P. Mastroiacovo, T. J. Wright, G. Sorge, A. Selicorni, R. Tenconi, A. Zappala, A. Battaglia, M. Di Rocco, G. Palka, R. Pallotta, M. R. Altherr, and G. Neri, Genotype-phenotype correlations and clinical diagnostic criteria in Wolf-Hirschhorn syndrome, Am J Med Genet 94(3), 254–261 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. I. Foucault, S. Le Bras, C. Charvet, C. Moon, A. Altman, and M. Deckert, The adaptor protein 3BP2 associates with VAV guanine nucleotide exchange factors to regulate NFAT activation by the B-cell antigen receptor, Blood 105(3), 1106–1113 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. D. Jevremovic, D. D. Billadeau, R. A. Schoon, C. J. Dick, and P. J. Leibson, Regulation of NK cell-mediated cytotoxicity by the adaptor protein 3BP2, J Immunol 166(12), 7219–7228 (2001).

    PubMed  CAS  Google Scholar 

  7. K. Sada, S. M. Miah, K. Maeno, S. Kyo, X. Qu, and H. Yamamura, Regulation of FcepsilonRI-mediated degranulation by an adaptor protein 3BP2 in rat basophilic leukemia RBL-2H3 cells, Blood 100(6), 2138–2144 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. D. C. Han, T. L. Shen, and J. L. Guan, The Grb7 family proteins: structure, interactions with other signaling molecules and potential cellular functions, Oncogene 20(44), 6315–6321 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. B. J. Mayer, SH3 domains: complexity in moderation, J Cell Sci 114(Pt 7), 1253–1263 (2001).

    PubMed  CAS  Google Scholar 

  10. K. Maeno, K. Sada, S. Kyo, S. M. Miah, K. Kawauchi-Kamata, X. Qu, Y. Shi, and H. Yamamura, Adaptor protein 3BP2 is a potential ligand of Src homology 2 and 3 domains of Lyn protein-tyrosine kinase, J Biol Chem 278(27), 24912–24920 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. B. K. Kay, M. P. Williamson, and M. Sudol, The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains, Faseb J 14(2), 231–241 (2000).

    PubMed  CAS  Google Scholar 

  12. Z. Songyang, S. E. Shoelson, J. McGlade, P. Olivier, T. Pawson, X. R. Bustelo, M. Barbacid, H. Sabe, H. Hanafusa, T. Yi, R. Ren, D. Baltimore, S. Ratnofsky, R. A. Feldman, and L. C. Cantley, Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav, Mol Cell Biol. 14(4), 2777–2785 (1994).

    PubMed  CAS  Google Scholar 

  13. T. Kendrick, R. Lipscombe, O. Rausch, S. E. Nicholson, J. E. Layton, L. C. Goldie-Cregan, and M. A. Bogoyevitch, Contribution of the membrane distal tyrosine in intracellular signaling by the granulocyte colony-stimulating factor-receptor, J Biol Chem 279(1), 326–340 (2004).

    Article  PubMed  CAS  Google Scholar 

  14. X. Qu, K. Kawauchi-Kamata, S. M. Miah, T. Hatani, H. Yamamura, and K. Sada, Tyrosine phosphorylation of adaptor protein 3BP2 induces T cell receptor-mediated activation of transcription factor, Biochemistry 44(10), 3891–3898 (2005).

    Article  PubMed  CAS  Google Scholar 

  15. I. Foucault, Y. Liu, A. Bernard, and M. Deckert, The chaperone protein 14-3-3 interacts with 3BP2/SH3BP2 and regulates its adapter function, J Biol Chem 278(9), 7146–7153 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. S. M. Miah, T. Hatani, X. Qu, H. Yamamura, and K. Sada, Point mutations of 3BP2 identified in human-inherited disease cherubism result in the loss of function, Genes Cells 9(11), 993–1004 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. R. L. Wange, LAT, the linker for activation of T cells: a bridge between T cell-specific and general signaling pathways, Sci STKE 2000(63), RE1 (2000).

    PubMed  CAS  Google Scholar 

  18. M. Turner, and D. D. Billadeau, VAV proteins as signal integrators for multi-subunit immune-recognition receptors, Nat Rev Immunol 2(7), 476–486 (2002).

    Article  PubMed  CAS  Google Scholar 

  19. E. Genot, S. Cleverley, S. Henning, and D. Cantrell, Multiple p21ras effector pathways regulate nuclear factor of activated T cells, Embo J 15(15), 3923–3933 (1996).

    PubMed  CAS  Google Scholar 

  20. O. Kaminuma, M. Deckert, C. Elly, Y. C. Liu, and A. Altman, Vav-Rac1-Mediated Activation of the c-Jun N-Terminal Kinase/c-Jun/AP-1 Pathway Plays a Major Role in Stimulation of the Distal NFAT Site in the Interleukin-2 Gene Promoter, Mol Cell Biol 21(9), 3126–3136 (2001).

    Article  PubMed  CAS  Google Scholar 

  21. S. Zakaria, T. S. Gomez, D. N. Savoy, S. McAdam, M. Turner, R. T. Abraham, and D. D. Billadeau, Differential Regulation of TCR-mediated Gene Transcription by Vav Family Members, J Exp Med 199(3), 429–434 (2004).

    Article  PubMed  CAS  Google Scholar 

  22. J. Wu, D. G. Motto, G. A. Koretzky, and A. Weiss, Vav and SLP-76 interact and functionally cooperate in IL-2 gene activation, Immunity 4(6), 593–602 (1996).

    Article  PubMed  CAS  Google Scholar 

  23. C. Charvet, A. J. Canonigo, D. D. Billadeau, and A. Altman, Membrane localization and function of Vav3 in T cells depend on its association with the adapter SLP-76, J Biol Chem 280(15), 15289–15299 (2005).

    Article  PubMed  CAS  Google Scholar 

  24. S. Tartare-Deckert, N. Monthouel, C. Charvet, I. Foucault, E. Van Obberghen, A. Bernard, A. Altman, and M. Deckert, Vav2 activates c-fos serum response element and CD69 expression, but negatively regulates NF-AT and IL-2 gene activation in T lymphocyte, J Biol Chem 276(24), 20849–20857 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. I. Saborit-Villarroya, J. M. Del Valle, X. Romero, E. Esplugues, P. Lauzurica, P. Engel, and M. Martin, The adaptor protein 3BP2 binds human CD244 and links this receptor to Vav signaling, ERK activation, and NK cell killing, J Immunol 175(7), 4226–4235 (2005).

    PubMed  CAS  Google Scholar 

  26. Y. Ueki, V. Tiziani, C. Santanna, N. Fukai, C. Maulik, J. Garfinkle, C. Ninomiya, C. doAmaral, H. Peters, M. Habal, L. Rhee-Morris, J. B. Doss, S. Kreiborg, B. R. Olsen, and E. Reichenberger, Mutations in the gene encoding c-Abl-binding protein SH3BP2 cause cherubism, Nat Genet 28(2), 125–126 (2001).

    Article  PubMed  CAS  Google Scholar 

  27. J. Southgate, U. Sarma, J. V. Townend, J. Barron, and A. M. Flanagan, Study of the cell biology and biochemistry of cherubism, J Clin Pathol 51(11), 831–837 (1998).

    Article  PubMed  CAS  Google Scholar 

  28. Y. Imai, K. Kanno, T. Moriya, S. Kayano, H. Seino, Y. Matsubara, and A. Yamada, A missense mutation in the SH3BP2 gene on chromosome 4p16.3 found in a case of nonfamilial cherubism, Cleft Palate Craniofac J 40(6), 632–638 (2003).

    Article  PubMed  Google Scholar 

  29. B. Lo, M. Faiyaz-Ul-Haque, S. Kennedy, R. Aviv, L. C. Tsui, and A. S. Teebi, Novel mutation in the gene encoding c-Abl-binding protein SH3BP2 causes cherubism, Am J Med Genet 121A(1), 37–40 (2003).

    Article  Google Scholar 

  30. B. Li, S. Boast, K. de los Santos, I. Schieren, M. Quiroz, S. L. Teitelbaum, M. M. Tondravi, and S. P. Goff, Mice deficient in Abl are osteoporotic and have defects in osteoblast maturation, Nat Genet 24(3), 304–308 (2000).

    Article  PubMed  CAS  Google Scholar 

  31. P. Soriano, C. Montgomery, R. Geske, and A. Bradley, Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice, Cell 64(4), 693–702 (1991).

    Article  PubMed  CAS  Google Scholar 

  32. S. Tanaka, M. Amling, L. Neff, A. Peyman, E. Uhlmann, J. B. Levy, and R. Baron, c-Cbl is downstream of c-Src in a signalling pathway necessary for bone resorption, Nature 383(6600), 528–531 (1996).

    Article  PubMed  CAS  Google Scholar 

  33. R. Faccio, S. Teitelbaum, K. Fujikawa, J. Chappel, A. Zallone, V. L. Tybulewicz, F. P. Ross, and W. Swat, Vav3 regulates osteoclast function and bone mass, Nat Med 11, 284–290 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. A. Mocsai, M. Humphrey, J. Van Ziffle, Y. Hu, A. Burghardt, S. C. Spusta, S. Majumdar, L. L. Lanier, C. A. Lowell, and M. C. Nakamura, The immunomodulatory adapter proteins DAP12 and Fc receptor gamma-chain (FcRgamma) regulate development of functional osteoclasts through the Syk tyrosine kinase, Proc Natl Acad Sci USA 101(16), 6158–6163 (2004).

    Article  PubMed  CAS  Google Scholar 

  35. H. Takayanagi, Mechanistic insight into osteoclast differentiation in osteoimmunology, J Mol Med 83(3), 170–179 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Deckert, M., Rottapel, R. (2006). The Adapter 3BP2: How It Plugs into Leukocyte Signaling. In: Tsoukas, C. (eds) Lymphocyte Signal Transduction. Advances in Experimental Medicine and Biology, vol 584. Springer, Boston, MA. https://doi.org/10.1007/0-387-34132-3_8

Download citation

Publish with us

Policies and ethics