Skip to main content

CTIB (C-Terminus Protein of IκB-β: A Novel Factor Required for Acidic Adaptation

  • Conference paper
Lymphocyte Signal Transduction

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

11. References

  1. P. Shubik, Vascularization of tumors, J Cancer Res Clin Oncol 103(3), 211–226 (1982).

    Article  PubMed  CAS  Google Scholar 

  2. D.J. Chaplin, P.L. Olive and R.E. Durand, Intermittent blood flow in a murine tumor: Radiobiological effects, Cancer Res 47(2), 597–601 (1987).

    PubMed  CAS  Google Scholar 

  3. P. Vaupel, F. Kallinowski and P. Okunieff, Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors, Cancer Res 49(23), 6449–6465 (1989).

    PubMed  CAS  Google Scholar 

  4. I.F. Tannock and D. Rotin, Acid pH in tumors and its potential for therapeutic exploitation, Cancer Res 49(16), 4373–4384 (1989).

    PubMed  CAS  Google Scholar 

  5. G.R. Martin and R.K. Jain, Noninvasive measurement of interstitial pH profiles in normal and neoplastic tissue using fluorescence ratio imaging microscopy, Cancer Res 54(21), 5670–5674 (1994).

    PubMed  CAS  Google Scholar 

  6. M. Yamagata, K. Hasuda, T. Stamato and I.F. Tannock, The contribution of lactic acid to acidification of tumours: Studies of variant cells lacking lactate dehydrogenase, Br J Cancer 77(11), 1726–1731 (1998).

    PubMed  CAS  Google Scholar 

  7. B. Muller, B. Fischer and W. Kreutz, An acidic microenvironment impairs the generation of non-major histocompatibility complex-restricted killer cells, Immunology 99(3), 375–384 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. B. Fischer, B. Muller, K.G. Fischer, N. Baur and W. Kreutz, Acidic pH inhibits non-MHC-restricted killer cell functions, Clin Immunol 96(3), 252–263 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. A. Subtil, A. Hemar and A. Dautry-Varsat, Rapid endocytosis of interleukin 2 receptors when clathrin-coated pit endocytosis is inhibited, J Cell Sci 107(12), 3461–3468 (1994).

    PubMed  CAS  Google Scholar 

  10. A.S. Trevani, G. Andonegui, M. Giordano, D.H. Lopez, R. Gamberale, F. Minucci and J.R. Geffner, Extracellular acidification induces human neutrophil activation, J Immunol 162(8), 4849–4857 (1999).

    PubMed  CAS  Google Scholar 

  11. T. Fukamachi, H. Saito, T. Kakegawa and H. Kobayashi, Different proteins are phosphorylated under acidic environments in Jurkat cells, Immunol Lett 82(1–2), 155–158 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. S. Grinstein, D. Rotin and M.J. Mason, Na+/H+ exchange and growth factor-induced cytosolic pH changes, Role in cellular proliferation, Biochim Biophys Acta 988(1), 73–97 (1989).

    PubMed  CAS  Google Scholar 

  13. J. Orlowski and S. Grinstein, Na+/H+ exchangers of mammalian cells, J Biol Chem 272(36), 22373–22376 (1997).

    Article  PubMed  CAS  Google Scholar 

  14. O. Aharonovitz, H.C. Zaun, T. Balla, J.D. York, J. Orlowski and S. Grinstein, Intracellular pH regulation by Na+/H+ exchange requires phosphatidylinositol 4,5-bisphosphate, J Cell Biol 150(1), 213–224 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. D. Cassel, O. Scharf, M. Rotman, E.J. Cragoe, Jr. and M. Katz, Characterization of Na+-linked and Na+-independent Cl/HCO3 exchange systems in Chinese hamster lung fibroblasts, J Biol Chem 263(13), 6122–6127 (1988).

    PubMed  CAS  Google Scholar 

  16. N. Vilarino, M.R. Vieytes, J.M. Vieites and L.M. Botana, Role of HCO3 ions in cytosolic pH regulation in rat mast cells: Evidence for a new Na+-independent, HCO3 -dependent alkalinizing mechanism, Biochem Biophys Res Commun 253(2), 320–324 (1998).

    Article  PubMed  CAS  Google Scholar 

  17. J.G. Fitz, M. Persico and B.F. Scharschmidt, Electrophysiological evidence for Na+-coupled bicarbonate transport in cultured rat hepatocytes, Am J Physiol Gastrointest Liver Physiol 256(3), G491–G500 (1989).

    CAS  Google Scholar 

  18. J.H. Schwartz, S.A. Masino, R.D. Nichols and E.A. Alexander, Intracellular modulation of acid secretion in rat inner medullary collecting duct cells, Am J Physiol Renal Physiol 266(1), F94–F101 (1994).

    Google Scholar 

  19. H. Amlal, Z. Wang and M. Soleimani, Functional upregulation of H+-ATPase by lethal acid stress in cultured inner medullary collecting duct cells, Am J Physiol Cell Physiol 273(4), C1194–C1205 (1997).

    CAS  Google Scholar 

  20. L. Xu, D. Fukumura and R.K. Jain, Acidic extracellular pH induces vascular endothelial growth factor (VEGF) in human glioblastoma cells via ERK1/2 MAPK signaling pathway: mechanism of low pH-induced VEGF, J Biol Chem 277(13), 11368–11374 (2002); Erratum in J Biol Chem 277(21), 19242 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. R.F. Souza, K. Shewmake, S. Pearson, G.A. Sarosi, Jr., L.A. Feagins, R.D. Ramirez, L.S. Terada and S.J. Spechler, Acid increases proliferation via ERK and p38 MAPK-mediated increases in cyclooxygenase-2 in Barrett’s adenocarcinoma cells, Am J Physiol Gastrointest Liver Physiol 287(4), G743–G748 (2004).

    Article  PubMed  CAS  Google Scholar 

  22. E. Feifel, P. Obexer, M. Andratsch, S. Euler, L. Taylor, A. Tang, Y. Wei, H. Schramek, N.P. Curthoys and G. Gstraunthaler, p38 MAPK mediates acid-induced transcription of PEPCK in LLC-PK1-FBPase+ cells, Am J Physiol Renal Physiol 283(4), F678–F688 (2002).

    PubMed  Google Scholar 

  23. M. Zheng, R. Hou and R.P. Xiao, Acidosis-induced p38 MAPK activation and its implication in regulation of cardiac contractility, Acta Pharmacol Sin 25(10), 1299–1305 (2004).

    PubMed  CAS  Google Scholar 

  24. M. Zheng, C. Reynolds, S.H. Jo, R. Wersto, Q. Han and R.P. Xiao, Intracellular acidosis-activated p38 MAPK signaling and its essential role in cardiomyocyte hypoxic injury, FASEB J 19(1), 109–111 (2005).

    PubMed  CAS  Google Scholar 

  25. S.V. Komarova, A. Pereverzev, J.W. Shum, S.M. Sims and S.J. Dixon, Convergent signaling by acidosis and receptor activator of NF-κB ligand (RANKL) on the calcium/calcineurin/NFAT pathway in osteoclasts, P Natl Acad Sci USA 102(7), 2643–2648 (2005).

    Article  CAS  Google Scholar 

  26. Y. Kato, C.A. Lambert, A.C. Colige, P. Mineur, A. Noel, F. Frankenne, J.M. Foidart, M. Baba, R. Hata, K. Miyazaki and M. Tsukuda, Acidic extracellular pH induces matrix metalloproteinase-9 expression in mouse metastatic melanoma cells through the phospholipase D-mitogen-activated protein kinase signaling, J Biol Chem 280(12), 10938–10944 (2005).

    Article  PubMed  CAS  Google Scholar 

  27. T. A. Heming, S. K. Dave, D. M. Tuazon, A. K. Chopra, J. W. Peterson and A. Bidani, Effects of extracellular pH on tumour necrosis factor-α production by resident alveolar macrophages, Clin Sci (Lond) 101(3), 267–274 (2001).

    Article  CAS  Google Scholar 

  28. A. Bellocq, S. Suberville, C. Philippe, F. Bertrand, J. Perez, B. Fouqueray, G. Cherqui and L. Baud, Low environmental pH is responsible for the induction of nitricoxide synthase in macrophages: evidence for involvement of nuclear factor-κB activation, J Biol Chem 273(9), 5086–5092 (1998).

    Article  PubMed  CAS  Google Scholar 

  29. C. J. Huang, I. U. Haque, P. N. Slovin, R. B. Nielsen, X. Fang and J. W. Skimming, Environmental pH regulates LPS-induced nitric oxide formation in murine macrophages, Nitric Oxide 6(1), 73–78 (2002).

    Article  PubMed  CAS  Google Scholar 

  30. C.G. Radu, A. Nijagal, J. McLaughlin, L. Wang and O.N. Witte, Differential proton sensitivity of related G protein-coupled receptors T cell death-associated gene 8 and G2A expressed in immune cells, P Natl Acad Sci USA 102(5), 1632–1637 (2005).

    Article  CAS  Google Scholar 

  31. Q. Lao, O. Kuge, T. Fukamachi, T. Kakegawa, H. Saito, M. Nishijima and H. Kobayashi, An IκB-β COOH terminal region protein is essential for the proliferation of CHO cells under acidic stress, J Cell Physiol 203(1), 186–192 (2005).

    Article  PubMed  CAS  Google Scholar 

  32. M. Kozak, Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes, Cell 44(2), 283–292 (1986).

    Article  PubMed  CAS  Google Scholar 

  33. Q. Lao, T. Fukamachi, H. Saito, O. Kuge, M. Nishijima and H. Kobayashi, Requirement of an IκB-β COOH terminal region protein for acidic-adaptation in CHO cells, J Cell Physiol, in press.

    Google Scholar 

  34. A. A. Beg and A. S. Baldwin, Jr., The IκB proteins: multifunctional regulators of Rel/NF-κB transcription factors, Genes Dev 7(11), 2064–2070 (1993).

    PubMed  CAS  Google Scholar 

  35. Z. L. Chu, T. A. McKinsey, L. Liu, X. Qi and D.W. Ballard, Basal phosphorylation of the PEST domain in the IκB-β regulates its functional interaction with the c-rel proto-oncogene product, Mol Cell Biol 16(11), 5974–5984 (1996).

    PubMed  CAS  Google Scholar 

  36. T. A. McKinsey, Z. L. Chu and D. W. Ballard, Phosphorylation of the PEST domain of IκB-βregulates the function of NF-κB /IκB-β complexes, J Biol Chem 272(36), 22377–22380 (1997).

    Article  PubMed  CAS  Google Scholar 

  37. P.M. Baldini, P. De Vito, D. Vismara, C. Bagni, F. Zalfa, M. Minieri and P. Di Nardo, Atrial natriuretic peptide effects on intracellular pH changes and ROS production in HEPG2 cells: role of p38 MAPK and phospholipase D, Cell Physiol Biochem 15(1–4), 77–88 (2005).

    Article  PubMed  CAS  Google Scholar 

  38. A.V. Kochetov, A. Sarai, I.B. Rogozin, V.K. Shumny and N.A. Kolchanov, The role of alternative translation start sites in the generation of human protein diversity, Mol Genet Genomics 273(6), 491–496 (2005).

    Article  PubMed  CAS  Google Scholar 

  39. INTERNATIONAL HUMAN GENOME SEQUENCING CONSORTIUM, Finishing the euchromatic sequence of the human genome, Nature 431(7011), 931–945 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Fukamachi, T., Lao, Q., Okamura, S., Saito, H., Kobayashi, H. (2006). CTIB (C-Terminus Protein of IκB-β: A Novel Factor Required for Acidic Adaptation. In: Tsoukas, C. (eds) Lymphocyte Signal Transduction. Advances in Experimental Medicine and Biology, vol 584. Springer, Boston, MA. https://doi.org/10.1007/0-387-34132-3_16

Download citation

Publish with us

Policies and ethics