Skip to main content

Immune Regulation by Ubiquitin Conjugation

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((volume 584))

10. Concluding Remarks

It becomes increasingly evident that protein ubiquitination is closely linked to many aspects of the immune system and the E3 ubiquitin ligases play an important role in those processes via specific targeting of protein substrates. Gene database searching has indicated that there are several hundred E3 ubiquitin ligases, with the majority being RING finger-containing E3 ligases. It is conceivable that there will be very complicated interplay among the E3 ligases. Several E3 ligases may target the same substrate, or otherwise, one E3 ligase may target different substrates under diverse physiological conditions. In addition, the list of de-ubiquiting enzymes involved in immune regulation will increase in the near future. It has to be mentioned that biochemical and molecular approaches are still the main tools for identification of a substrate for a particular E3 ubiquitin ligase. The physiological relevance of such findings has to be correlated with genetic investigations. In any case, the field of research on protein ubiquitination in immune modulation will continue to be a hot topic in the years to come.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

12. References

  1. A. Hershko, A. Ciechanover, H. Heller, A. L. Haas and I. A. Rose, Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis, Proc Natl Acad Sci USA 77, 1783–1786 (1980).

    Article  PubMed  CAS  Google Scholar 

  2. C. M. Pickart, Mechanisms underlying ubiquitination, Annu Rev Biochem 70, 503–533 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. A. M. Weissman, Themes and variations on ubiquitylation, Nat Rev Mol Cell Biol 2, 169–178 (2001).

    Article  PubMed  CAS  Google Scholar 

  4. L. Hicke, Protein regulation by monoubiquitin, Nat Rev Mol Cell Biol 2, 195–201 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. M. Karin and Y. Ben-Neriah, Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity, Annu Rev Immunol 18, 621–663 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. Y. C. Liu, Ubiquitin ligases and the immune response, Annu Rev Immunol 22, 81–127 (2004).

    Article  PubMed  Google Scholar 

  7. T. R. Mosmann and R. L. Coffman, TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties, Annu Rev Immunol 7, 145–173 (1989).

    Article  PubMed  CAS  Google Scholar 

  8. K. M. Murphy and S. L. Reiner, The lineage decisions of helper T cells, Nat Rev Immunol 2, 933–944 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. C. M. Hustad, W. L. Perry, L. D. Siracusa, C. Rasberry, L. Cobb, B. M. Cattanach, R. Kovatch, N. G. Copeland and N. A. Jenkins, Molecular genetic characterization of six recessive viable alleles of the mouse agouti locus, Genetics 140, 255–265 (1995).

    PubMed  CAS  Google Scholar 

  10. W. L. Perry, C. M. Hustad, D. A. Swing, T. N. O’Sullivan, N. A. Jenkins and N. G. Copeland, The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in a18H mice [see comments], Nat Genet 18, 143–146 (1998).

    Article  PubMed  CAS  Google Scholar 

  11. D. Fang, C. Elly, B. Gao, N. Fang, Y. Altman, C. Joazeiro, T. Hunter, N. Copeland, N. Jenkins and Y. C. Liu, Dysregulation of T lymphocyte function in itchy mice: a role for Itch in TH2 differentiation, Nat Immunol 3, 281–287 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. B. Li, C. Tournier, R. J. Davis and R. A. Flavell, Regulation of IL-4 expression by the transcription factor JunB during T helper cell differentiation, Embo J 18, 420–432 (1999).

    Article  PubMed  Google Scholar 

  13. B. Hartenstein, S. Teurich, J. Hess, J. Schenkel, M. Schorpp-Kistner and P. Angel, Th2 cell-specific cytokine expression and allergen-induced airway inflammation depend on JunB, Embo J 21, 6321–6329 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. M. Gao, T. Labuda, Y. Xia, E. Gallagher, D. Fang, Y. C. Liu and M. Karin, Jun turnover is controlled through JNK-dependent phosphorylation of the E3 ligase Itch, Science 306, 271–275 (2004).

    Article  PubMed  CAS  Google Scholar 

  15. L. S. Walker and A. K. Abbas, The enemy within: keeping self-reactive T cells at bay in the periphery, Nat Rev Immunol 2, 11–19 (2002).

    Article  PubMed  CAS  Google Scholar 

  16. R. H. Schwartz, T cell anergy, Annu Rev Immunol 21, 305–334 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. V. Heissmeyer, F. Macian, S. H. Im, R. Varma, S. Feske, K. Venuprasad, H. Gu, Y. C. Liu, M. L. Dustin and A. Rao, Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins, Nat Immunol 5, 255–265 (2004).

    Article  PubMed  CAS  Google Scholar 

  18. M. S. Jeon, A. Atfield, K. Venuprasad, C. Krawczyk, R. Sarao, C. Elly, C. Yang, S. Arya, K. Bachmaier, L. Su, D. Bouchard, R. Jones, M. Gronski, P. Ohashi, T. Wada, D. Bloom, C. G. Fathman, Y. C. Liu and J. M. Penninger, Essential role of the E3 ubiquitin ligase Cbl-b in t cell anergy induction, Immunity 21, 167–177 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. N. Anandasabapathy, G. S. Ford, D. Bloom, C. Holness, V. Paragas, C. Seroogy, H. Skrenta, M. Hollenhorst, C. G. Fathman and L. Soares, GRAIL: an E3 ubiquitin ligase that inhibits cytokine gene transcription is expressed in anergic CD4+ T cells, Immunity 18, 535–547 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. M. Safford, S. Collins, M. A. Lutz, A. Allen, C. T. Huang, J. Kowalski, A. Blackford, M. R. Horton, C. Drake, R. H. Schwartz and J. D. Powell, Egr-2 and Egr-3 are negative regulators of T cell activation, Nat Immunol 6, 472–480 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. C. G. Vinuesa, M. C. Cook, C. Angelucci, V. Athanasopoulos, L. Rui, K. M. Hill, D. Yu, H. Domaschenz, B. Whittle, T. Lambe, I. S. Roberts, R. R. Copley, J. I. Bell, R. J. Cornall and C. C. Goodnow, A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity, Nature 435, 452–458 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. A. Hutloff, K. Buchner, K. Reiter, H. J. Baelde, M. Odendahl, A. Jacobi, T. Dorner and R. A. Kroczek, Involvement of inducible costimulator in the exaggerated memory B cell and plasma cell generation in systemic lupus erythematosus, Arthritis Rheum 50, 3211–3220 (2004).

    Article  PubMed  Google Scholar 

  23. B. Greve, L. Vijayakrishnan, A. Kubal, R. A. Sobel, L. B. Peterson, L. S. Wicker and V. K. Kuchroo, The diabetes susceptibility locus Idd5.1 on mouse chromosome 1 regulates ICOS expression and modulates murine experimental autoimmune encephalomyelitis, J Immunol 173, 157–163 (2004).

    PubMed  CAS  Google Scholar 

  24. M. Wickens and A. Goldstrohm, Molecular biology. A place to die, a place to sleep, Science 300, 753–755 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. G. Laroia, R. Cuesta, G. Brewer and R. J. Schneider, Control of mRNA decay by heat shock-ubiquitin-proteasome pathway, Science 284, 499–502 (1999).

    Article  PubMed  CAS  Google Scholar 

  26. S. Ghosh and M. Karin, Missing pieces in the NF-kappaB puzzle, Cell 109 Suppl, S81–96 (2002).

    Article  PubMed  Google Scholar 

  27. L. Deng, C. Wang, E. Spencer, L. Yang, A. Braun, J. You, C. Slaughter, C. Pickart and Z. J. Chen, Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain, Cell 103, 351–361 (2000).

    Article  PubMed  CAS  Google Scholar 

  28. L. Sun, L. Deng, C. K. Ea, Z. P. Xia and Z. J. Chen, The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes, Mol Cell 14, 289–301 (2004).

    Article  PubMed  CAS  Google Scholar 

  29. A. W. Opipari, Jr., M. S. Boguski and V. M. Dixit, The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein, J Biol Chem 265, 14705–14708 (1990).

    PubMed  CAS  Google Scholar 

  30. M. Tewari, F. W. Wolf, M. F. Seldin, K. S. O’Shea, V. M. Dixit and L. A. Turka, Lymphoid expression and regulation of A20, an inhibitor of programmed cell death, J Immunol 154, 1699–1706 (1995).

    PubMed  CAS  Google Scholar 

  31. J. T. Cooper, D. M. Stroka, C. Brostjan, A. Palmetshofer, F. H. Bach and C. Ferran, A20 expression inhibits endothelial cell activation, Transplant Proc 29, 881 (1997).

    Article  PubMed  CAS  Google Scholar 

  32. K. L. He and A. T. Ting, A20 inhibits tumor necrosis factor (TNF) alpha-induced apoptosis by disrupting recruitment of TRADD and RIP to the TNF receptor 1 complex in Jurkat T cells, Mol Cell Biol 22, 6034–6045 (2002).

    Article  PubMed  CAS  Google Scholar 

  33. E. G. Lee, D. L. Boone, S. Chai, S. L. Libby, M. Chien, J. P. Lodolce and A. Ma, Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice, Science 289, 2350–2354 (2000).

    Article  PubMed  CAS  Google Scholar 

  34. I. E. Wertz, K. M. O’Rourke, H. Zhou, M. Eby, L. Aravind, S. Seshagiri, P. Wu, C. Wiesmann, R. Baker, D. L. Boone, A. Ma, E. V. Koonin and V. M. Dixit, Deubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling, Nature 430, 694–699 (2004).

    Article  PubMed  CAS  Google Scholar 

  35. D. L. Boone, E. E. Turer, E. G. Lee, R. C. Ahmad, M. T. Wheeler, C. Tsui, P. Hurley, M. Chien, S. Chai, O. Hitotsumatsu, E. McNally, C. Pickart and A. Ma, The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses, Nat Immunol 5, 1052–1060 (2004).

    Article  PubMed  CAS  Google Scholar 

  36. L. M. Bradley, Migration and T-lymphocyte effector function, Curr Opin Immunol 15, 343–348 (2003).

    Article  PubMed  CAS  Google Scholar 

  37. N. Hogg, M. Laschinger, K. Giles and A. McDowall, T-cell integrins: more than just sticking points, J Cell Sci 116, 4695–4705 (2003).

    Article  PubMed  CAS  Google Scholar 

  38. M. L. Dustin and T. A. Springer, T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1, Nature 341, 619–624 (1989).

    Article  PubMed  CAS  Google Scholar 

  39. Y. van Kooyk and C. G. Figdor, Avidity regulation of integrins: the driving force in leukocyte adhesion, Curr Opin Cell Biol 12, 542–547 (2000).

    Article  PubMed  Google Scholar 

  40. T. Kinashi, Intracellular signalling controlling integrin activation in lymphocytes, Nat Rev Immunol 5, 546–559 (2005).

    Article  PubMed  CAS  Google Scholar 

  41. M. Shimonaka, K. Katagiri, T. Nakayama, N. Fujita, T. Tsuruo, O. Yoshie and T. Kinashi, Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow, J Cell Biol 161, 417–427 (2003).

    Article  PubMed  CAS  Google Scholar 

  42. K. Katagiri, A. Maeda, M. Shimonaka and T. Kinashi, RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1, Nat Immunol 4, 741–748 (2003).

    Article  PubMed  CAS  Google Scholar 

  43. Y. Shao, C. Elly and Y. C. Liu, Negative regulation of Rap1 activation by the Cbl E3 ubiquitin ligase, EMBO Rep 4, 425–431 (2003).

    Article  PubMed  CAS  Google Scholar 

  44. W. Zhang, Y. Shao, D. Fang, J. Huang, M. S. Jeon and Y. C. Liu, Negative regulation of T cell antigen receptor-mediated Crk-L-C3G signaling and cell adhesion by Cbl-b, J Biol Chem 278, 23978–23983 (2003).

    Article  PubMed  CAS  Google Scholar 

  45. H. R. Wang, Y. Zhang, B. Ozdamar, A. A. Ogunjimi, E. Alexandrova, G. H. Thomsen and J. L. Wrana, Regulation of cell polarity and protrusion formation by targeting RhoA for degradation, Science 302, 1775–1779 (2003).

    Article  PubMed  CAS  Google Scholar 

  46. D. Rossi and A. Zlotnik, The biology of chemokines and their receptors, Annu Rev Immunol 18, 217–242 (2000).

    Article  PubMed  CAS  Google Scholar 

  47. N. F. Neel, E. Schutyser, J. Sai, G. H. Fan and A. Richmond, Chemokine receptor internalization and intracellular trafficking, Cytokine Growth Factor Rev (2005).

    Google Scholar 

  48. A. Marchese and J. L. Benovic, Agonist-promoted ubiquitination of the G proteincoupled receptor CXCR4 mediates lysosomal sorting, J Biol Chem 276, 45509–45512 (2001).

    Article  PubMed  CAS  Google Scholar 

  49. C. K. Lapham, T. Romantseva, E. Petricoin, L. R. King, J. Manischewitz, M. B. Zaitseva and H. Golding, CXCR4 heterogeneity in primary cells: possible role of ubiquitination, J Leukoc Biol 72, 1206–1214 (2002).

    PubMed  CAS  Google Scholar 

  50. A. Marchese, C. Raiborg, F. Santini, J. H. Keen, H. Stenmark and J. L. Benovic, The E3 ubiquitin ligase AIP4 mediates ubiquitination and sorting of the G proteincoupled receptor CXCR4, Dev Cell 5, 709–722 (2003).

    Article  PubMed  CAS  Google Scholar 

  51. K. Shuai and B. Liu, Regulation of JAK-STAT signalling in the immune system, Nat Rev Immunol 3, 900–911 (2003).

    Article  PubMed  CAS  Google Scholar 

  52. B. Liu, J. Liao, X. Rao, S. A. Kushner, C. D. Chung, D. D. Chang and K. Shuai, Inhibition of Stat1-mediated gene activation by PIAS1, Proc Natl Acad Sci USA 95, 10626–10631 (1998).

    Article  PubMed  CAS  Google Scholar 

  53. B. Liu, S. Mink, K. A. Wong, N. Stein, C. Getman, P. W. Dempsey, H. Wu and K. Shuai, PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity, Nat Immunol 5, 891–898 (2004).

    Article  PubMed  CAS  Google Scholar 

  54. R. S. Rogers, C. M. Horvath and M. J. Matunis, SUMO modification of STAT1 and its role in PIAS-mediated inhibition of gene activation, J Biol Chem 278, 30091–30097 (2003).

    Article  PubMed  CAS  Google Scholar 

  55. D. Ungureanu, S. Vanhatupa, J. Gronholm, J. J. Palvimo and O. Silvennoinen, SUMO-1 conjugation selectively modulates STAT1-mediated gene responses, Blood (2005).

    Google Scholar 

  56. D. Ungureanu, S. Vanhatupa, N. Kotaja, J. Yang, S. Aittomaki, O. A. Janne, J. J. Palvimo and O. Silvennoinen, PIAS proteins promote SUMO-1 conjugation to STAT1, Blood 102, 3311–3313 (2003).

    Article  PubMed  CAS  Google Scholar 

  57. T. Tanaka, M. A. Soriano and M. J. Grusby, SLIM is a nuclear ubiquitin E3 ligase that negatively regulates STAT signaling, Immunity 22, 729–736 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Venuprasad, K. et al. (2006). Immune Regulation by Ubiquitin Conjugation. In: Tsoukas, C. (eds) Lymphocyte Signal Transduction. Advances in Experimental Medicine and Biology, vol 584. Springer, Boston, MA. https://doi.org/10.1007/0-387-34132-3_15

Download citation

Publish with us

Policies and ethics