Skip to main content

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stauffer D, Stanley HE. From Newton to Mandelbrot: A Primer in Theoretical Physics. Heidelberg, New York: Springer-Verlag, 1990.

    MATH  Google Scholar 

  2. Stanley HE. Introduction to Phase Transitions and Critical Phenomena. London: Oxford University Press, 1971.

    Google Scholar 

  3. Stauffer D, Aharony A. Introduction to Percolation Theory. Philadelphia: Taylor & Francis, 1992.

    Google Scholar 

  4. de Gennes PG. Scaling Concepts in Polymer Physics. Ithaca: Cornell University Press, 1979.

    Google Scholar 

  5. Barabási AL, Stanley HE. Fractal Concepts in Surface Growth, Cambridge: Cambridge University Press, 1995.

    Book  MATH  Google Scholar 

  6. Mandelbrot BB. The Fractal Geometry of Nature. San Francisco: WH Freeman, 1982.

    MATH  Google Scholar 

  7. Feder J. Fractals. New York: Plenum, 1988.

    MATH  Google Scholar 

  8. Bunde A, Havlin S, eds. Fractals and Disordered Systems. Berlin: Springer-Verlag, 1991.

    MATH  Google Scholar 

  9. Bunde A, Havlin S, eds. Fractals in Science. Berlin: Springer-Verlag, 1994.

    MATH  Google Scholar 

  10. Garcia-Ruiz JM, Louis E, Meakin P et al, eds. Growth Patterns in Physical Sciences and Biology. New York: Plenum, 1993.

    Google Scholar 

  11. Grosberg AY, Khokhlov AR. Statistical Physics of Macromolecules, New York: AIP Press, 1994; Grosberg AY, Khokhlov AR. Giant Molecules. London: Academic Press, 1997.

    Google Scholar 

  12. Bassingthwaighte JB, Liebovitch LS, West BJ. Fractal Physiology. New York: Oxford University Press, 1994.

    Google Scholar 

  13. Vicsek T. Fractal Growth Phenomena. Singapore: World Scientific, 1992.

    MATH  Google Scholar 

  14. Vicsek T, Shlesinger M, Matsushita M, eds. Fractals in Natural Sciences. Singapore: World Scientific, 1994.

    MATH  Google Scholar 

  15. Guyon E, Stanley HE. Fractal Formes. Amsterdam: Elsevier, 1991.

    Google Scholar 

  16. Li W. The study of correlation structures of DNA sequences: a critical review. Computers Chem 1997; 21:257–271.

    Article  Google Scholar 

  17. Baxter RJ. Exactly Solvable Models in Statistical Mechanics. London: Academic Press, 1982.

    Google Scholar 

  18. Azbel MY. Random two-component, one-dimensional Ising model for heteropolymer melting. Phys Rev Lett 1973; 31:589–593.

    Article  ADS  Google Scholar 

  19. Azbel MY, Kantor Y, Verkh L et al. Statistical Analysis of DNA Sequences. Biopolymers 1982: 21:1687–1690.

    Article  Google Scholar 

  20. Azbel MY. Universality in a DNA statistical structure. Phys Rev Lett 1995; 75:168–171.

    Article  ADS  Google Scholar 

  21. Feller W. An introduction to ptobability theory and its applications. Vols. 1–2. New York: Jhon Wiley & Sons, 1970.

    Google Scholar 

  22. Binder K, ed. Monte Carlo Methods in Statistical Physics. Berlin: Springer-Verlag, 1979.

    Google Scholar 

  23. Karlin S, Brendel V. Patchiness and correlations in DNA sequences. Science 1993; 259:677–680.

    Article  ADS  Google Scholar 

  24. Grosberg AY, Rabin Y, Havlin S et al. Crumpled globule model of the 3-dimensional structure of DNA. Europhys Lett 1993; 23:373–378.

    Article  ADS  Google Scholar 

  25. des Cloizeaux, J. Short range correlation between elements of a long polymer in a good solvent. J Physique 1980; 41:223–238.

    Google Scholar 

  26. Bak P. How Nature Works. New York: Springer 1996.

    MATH  Google Scholar 

  27. Bak P, Tang C, Wiesenfeld K. Self-organised criticality: an explanation of 1/f noise. Phys Rev Lett 1987; 59:381–384.

    Article  ADS  MathSciNet  Google Scholar 

  28. Bak P, Sneppen, K. Punctuated equilibrium and criticality in a simple model of evolution. Phys Rev Lett 1993; 71:4083–4086.

    Article  ADS  Google Scholar 

  29. Paczuski M, Maslov S, Bak, P. Avalanche dynamics in evolution, growth and depinning models. Phys Rev E 1996; 53:414–443.

    Article  ADS  Google Scholar 

  30. Jovanovic B, Buldyrev SV, Havlin S et al. Punctuated equilibrium and history-dependent percolation. Phys Rev E 1994; 50, R2403–2406.

    Article  ADS  Google Scholar 

  31. Peng C-K, Buldyrev SV, Goldberger AL et al. Nature 1992; 356:168.

    Article  ADS  Google Scholar 

  32. Li W, Kaneko K. Long-range correlations and partial 1/f a spectrum in a noncoding DNA se-quence. Europhys Lett 1992; 17:655.

    Article  ADS  Google Scholar 

  33. Nee S. Uncorrelated DNA walks. Nature 1992; 357:450–450.

    Article  ADS  Google Scholar 

  34. Voss R. Evolution of long-range fractal correlations and 1/f noise in DNA base sequences. Phys Rev Lett 1992; 68:3805–3808.

    Article  ADS  Google Scholar 

  35. Voss R. Long-Range Fractal Correlations in DNA Introns and Exons. Fractals 1994; 2:1–6.

    Article  Google Scholar 

  36. Maddox J. Long-range correlations within DNA. Nature 1992; 358:103–103.

    Article  ADS  Google Scholar 

  37. Munson PJ, Taylor RC, Michaels GS. DNA correlations. Nature 1992; 360:636–636.

    Article  ADS  Google Scholar 

  38. Amato I. Mathematical biology-DNA shows unexplained patterns writ large. Science 1992; 257:747–747.

    Article  ADS  Google Scholar 

  39. Prabhu W, Claverie J-M. Correlations in intronless DNA. Nature 1992; 359:782–782.

    Article  ADS  Google Scholar 

  40. Chatzidimitriou-Dreismann CA, Larhammar D. Long-range correlations in DNA. Nature 1993; 361:212–213.

    Article  ADS  Google Scholar 

  41. Li W, Kaneko K. DNA correlations, Nature 1992; 360:635–636.

    Article  ADS  Google Scholar 

  42. Karlin S, Cardon LR. Computational DNA sequence analysis. Annu Rev Microbiol 1994; 48:619–54.

    Article  Google Scholar 

  43. Herzel H, Grosse I. Correlations in DNA sequences: The role of protein coding segments. Phys Rev E 1997; 55:800–810.

    Article  ADS  Google Scholar 

  44. Grosse I, Herzel H, Buldyrev SV et al. Species independence of mutual information in coding and noncoding DNA. Phys Rev E 2000; 61:5624–5629.

    Article  ADS  Google Scholar 

  45. Holste D, Grosse I, Herzel H et al. Optimization of coding potentials using positional dependence of nucleotide frequencies. J Theor Biol 206:525–537.

    Google Scholar 

  46. Berthelsen CL, Glazier JA, Skolnick MH. Global fractal dimension of human DNA sequences treated as pseudorandom walks. Phys Rev A 1992; 45:8902–8913.

    Article  ADS  Google Scholar 

  47. Borovik AS, Grosberg AY, Frank-Kamenetski MD. Fractality of DNA texts. J Biomolec Struct Dyn 1994; 12:655–669.

    Google Scholar 

  48. Li WT. Are isochore sequences homogeneous? Gene 2002; 300:129–139.

    Article  Google Scholar 

  49. Bernaola-Galvan P, Carpena P, Roman-Roldan R et al. Study of statistical correlations in DNA sequences. Gene 2002; 300:105–115.

    Article  Google Scholar 

  50. Oliver JL, Carpena P, Roman-Roldan R et al. Isochore chromosome maps of the human genome. Gene 2002; 300:117–127.

    Article  Google Scholar 

  51. Alberts B, Bray D, Lewis J et al. Molecular Biology of the Cell. New York: Garland Publishing, 1994.

    Google Scholar 

  52. Watson JD, Gilman M, Witkowski J et al. Recombinant DNA. New York: Scientific American Books, 1992.

    Google Scholar 

  53. Chen CF, Gentles AJ, Jurka J et al. Genes, pseudogenes, and Alu sequence organization across human chromosomes 21 and 22. Proc Natl Acad Sci USA 2002; 99:2930–2935.

    Article  ADS  Google Scholar 

  54. Altschul SF, Madden TL, Schaffer AA et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucl Acids Res 1997; 25:3389–3402.

    Article  Google Scholar 

  55. Audit B, Vaillant C, Arneodo A et al. Wavelet analysis of DNA bending profiles reveals structural constraints on the evolution of genomic sequences. J Biol Phys 2004; 30:33–81.

    Article  Google Scholar 

  56. Li WH. Expansion-modification systems: A model for spatial 1/f spectra. Phys Rev A 1991; 43:5240–5260.

    Article  ADS  MathSciNet  Google Scholar 

  57. Buldyrev SV, Goldberger AL, Havlin S et al. Generalized Levy Walk Model for DNA Nucleotide Sequences. Phys Rev E 1993; 47:4514–4523.

    Article  ADS  Google Scholar 

  58. Buldyrev SV, Goldberger AL, Havlin S et al. Fractal Landscapes and Molecular Evolution: Modeling the Myosin Heavy Chain Gene Family. Biophys J 1993; 65:2673–2681.

    Article  Google Scholar 

  59. Vieira MD, Herrmann HJ. A growth model for DNA evolution. Europhys Lett 1996; 33:409–414.

    Article  ADS  Google Scholar 

  60. Hansen JP, McDonald IR. Theory of Simple Liquids. London: Academic Press, 1976.

    Google Scholar 

  61. Abramowitz M, Stegun LA, eds. Handbook of Mathematical Functions. New York: Dover, 1965

    Google Scholar 

  62. Press WH, Flannery BP, Teukolsky SA et al. Numerical Recipes. Cambridge: Cambridge Univ Press, 1989.

    MATH  Google Scholar 

  63. Burrus CS, Parks TW. DFT/FFT and Convolution Algorithms. New York: John Wiley and Sons, Inc. 1985.

    Google Scholar 

  64. Peng CK, Buldyrev SV, Havlin S et al. Mosaic Organization of DNA Sequences. Phys Rev E 1994; 49:1685–1689.

    Article  ADS  Google Scholar 

  65. Chen Z, Ivanov PC, Hu K et al. Effect of nonstationarities on detrended fluctuation analysis. Phys Rev E 2002; 65:041107.

    Article  ADS  Google Scholar 

  66. Jurka J, Walichiewicz T, Milosavljevic A. Prototypic sequences for human repetitive DNA. J Mol Evol 1992; 35:286–291.

    Article  Google Scholar 

  67. Hattori M, Hidaka S, Sakaki Y. Sequence analysis of a KpnI family member near the 3′ end of human beta-globin gene. Nucleic Acids Res 1985; 13:7813–7827.

    Article  Google Scholar 

  68. Hwu RH, Roberts JW, Davidson EH et al. Insertion and/or deletion of many repeated DNA sequences in human and higher apes evolution. Proc Natl Acad Sci USA 1986; 83:3875–3879.

    Article  ADS  Google Scholar 

  69. Churchill GA. Hidden Markov chains and the analysis of genome structure. Computers Chem 1992; 16:107–116.

    Article  MATH  Google Scholar 

  70. Zolotarev VM, Uchaikin VM. Chance and Stability: Stable Distributions and their Applications. Utrecht: VSP BV, 1999.

    MATH  Google Scholar 

  71. Shlesinger MF, Zaslavsky GM, Frisch U, eds. Lévy Flights and Related Topics in Physics. Berlin: Springer-Verlag, 1995.

    MATH  Google Scholar 

  72. Arneodo A, D’Aubenton-Carafa Y, Audit B et al. What can we learn with wavelets about DNA sequences? Physica A 1998; 249:439–448.

    Article  Google Scholar 

  73. Voss RF, Clarke J. 1/f noise in music: music from 1/f noise. J Acoust Soc Amer 1978; 63:258–263.

    Article  ADS  Google Scholar 

  74. Schenkel A, Zhang J, Zhang, YC. Long Range Correlation in Human Writings. Fractals 1993; 1:47–57.

    Article  MATH  Google Scholar 

  75. Amit M, Shmerler Y, Eisenberg E et al. Language and codification dependence of long-range correlations in texts. Fractals 1994; 2:7–13.

    Article  Google Scholar 

  76. Trifonov EN. 3-, 10.5-, 200-and 400-base periodicities in genome sequences. Physica A 1998; 249:511–516.

    Article  Google Scholar 

  77. Gu X. Li WH. A model for the correlation of mutation-rate with gc content and the origin of gc rich isochores. J Mol Evol 1994; 38:468–475.

    Article  Google Scholar 

  78. Viswanathan GM, Buldyrev SV, Havlin S et al. Quantification of DNA patchiness using correlation measures. Biophys J 1997; 72:866–875.

    Article  Google Scholar 

  79. Viswanathan GM, Buldyrev SV, Havlin S et al. Long-range correlation measures for quantifying patchiness: Deviations from uniform power-law scaling in genomic DNA. Physica A 1998; 249:581–586.

    Article  Google Scholar 

  80. Buldyrev SV, Goldberger AL, Havlin S et al. Long-range correlation properties of coding and noncoding DNA sequences: GenBank analysis. Phys Rev E 1995; 51:5084–5091.

    Article  ADS  Google Scholar 

  81. Nyeo SL, Yang IC, and Wu CH. Spectral classification of archaeal and bacterial genomes. J Biol Syst 2002; 10:233–241.

    Article  MATH  Google Scholar 

  82. Arneodo A, Bacry E, Graves PV et al. Characterizing long-range correlations in dna-sequences from wavelet analysis. Phys Rev Lett 1995; 74:3293–3296.

    Article  ADS  Google Scholar 

  83. Nikolaou C, Almirantis Y. A study of the middle-scale nucleotide clustering in DNA sequences of various origin and functionality, by means of a method based on a modified standard deviation. J Theor Biol 2002; 217:479–492.

    Article  MathSciNet  Google Scholar 

  84. Ossadnik SM, Buldyrev SV, Goldberger AL et al. Correlation approach to identify coding regions in DNA sequences. Biophys J 1994; 67:64–70.

    Article  Google Scholar 

  85. Uberbacher EC, Mural RJ Locating protein-coding regions in human dna-sequences by a multiple sensor neural network approach. Proc Natl Acad Sci USA 1991; 88:11261–11265.

    Article  ADS  Google Scholar 

  86. Fickett JW, Tung CS. Assessment of protein coding measures. Nucleic Acids Research 1992; 20:6441–6450.

    Article  Google Scholar 

  87. Holste D, Grosse I, Beirer S et al. Repeats and correlations in human DNA sequences. Phys Rev E 2003; 67:061913.

    Article  ADS  Google Scholar 

  88. Bell GI. Roles of repetitive sequences. Comput Chem, 1992; 16:135–143

    Article  MATH  Google Scholar 

  89. Bell GI. Repetitive DNA sequences: some considerations for simple sequence repeats. Comput Chem 1993; 17:185–190.

    Article  MATH  Google Scholar 

  90. Bell GI. Evolution of simple sequence repeats. Comput Chem 1996; 20:41–48.

    Article  Google Scholar 

  91. Bell GI. and Jurka J. The length distribution of perfect dimer repetitive DNA is consistent with its evolution by an unbiased single step mutation process. J Mol Evol 1997; 44:414–421.

    Article  Google Scholar 

  92. Richards RI, Sutherland GR. Simple repeat DNA is not replicated simply. Nature Genetic 1994; 6:114–116.

    Article  Google Scholar 

  93. Richards RI, Sutherland GR. Simple tandem DNA repeats and human genetic disease. Proc Natl Acad Sci USA 1995; 92:3636–3641.

    Article  ADS  Google Scholar 

  94. Chen X, Mariappan SV, Catasti P et al. Hairpins are formed by the single DNA strands of the fragile X triplet repeats: structure and biological implications. Proc Natl Acad Sci USA 1995; 92:5199–5203.

    Article  ADS  Google Scholar 

  95. Gacy AM, Goellner G, Juramic N et al. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 1995; 81:533–540.

    Article  Google Scholar 

  96. Orth K, Hung J, Gazdar A et al. Genetic instability in human ovarian cancer cell lines. Proc Natl Acad Sci USA 1994; 91:9495–9499.

    Article  ADS  Google Scholar 

  97. Bowcock AM, Ruiz-Linares A, Tomfohrde J et al. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 1994; 368:455–457.

    Article  ADS  Google Scholar 

  98. Olaisen B, Bekkemoen M, Hoff-Olsen P et al. VNTR mutation and sex. In: Pena SDJ, Chakraborty, R, Epplen JT et al, eds. DNA Fingerprinting: State of the Science. Basel: Springer-Verlag, 1993.

    Google Scholar 

  99. Jurka J. Pethiyagoda G. Simple repetitive DNA sequences from primates: compilation and analysis. J Mol Evol 1995; 40:120–126.

    Article  Google Scholar 

  100. Li YC, Korol AB, Fahima T et al. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 2002; 11:2453–2465.

    Article  Google Scholar 

  101. Kremer E, Pritchard M, Lynch M et al. Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 1991; 252:1711–1714.

    Article  ADS  Google Scholar 

  102. Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993; 72:971–983.

    Article  Google Scholar 

  103. Ionov Y, Peinado MA, Malkhosyan S et al. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for clonic carcinogenesis. Nature 1993; 363:558–561.

    Article  ADS  Google Scholar 

  104. Kunkel TA. Slippery DNA and diseases. Nature 1993; 365:207–208.

    Article  ADS  Google Scholar 

  105. Wooster R, Cleton-Jansen AM, Collins N et al. Instability of short tandem repeats (microsatellites) in human cancers. Nat Genet 1994; 6:152–156.

    Article  Google Scholar 

  106. Dokholyan NV, Buldyrev SV, Havlin S et al. Distribution of base pair repeats in coding and noncoding DNA sequences. Phys Rev Lett 1997; 79:5182–5185.

    Article  ADS  Google Scholar 

  107. Dokholyan NV, Buldyrev SV, Havlin S et al. Distributions of dimeric tandem repeats in non-coding and coding DNA sequences. J Theor Biol 2000; 202:273–282.

    Article  Google Scholar 

  108. Dokholyan NV, Buldyrev SV, Havlin S et al. Model of unequal chromosomal crossing over in DNA sequences. Physica A 1998; 249:594–599.

    Article  Google Scholar 

  109. Charlesworth B, Sniegowski P, Stephan W. The evolutionary dynamics of repetative DNA in eukaryotes. Nature 1994; 371:215–220.

    Article  ADS  Google Scholar 

  110. Wells RD. Molecular basis of genetic instability of triplet repeats. J Biol Chem 1996; 271:2875–2878.

    Google Scholar 

  111. Levinson G, Gutman GA. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 1987; 4:203–221.

    Google Scholar 

  112. Buldyrev SV, Dokholyan NV, Havlin S et al. Expansion of tandem repeats and oligomer clustering in coding and noncoding DNA sequences. Physica A 1999; 273:19–32.

    Article  ADS  Google Scholar 

  113. Kruglyak S, Durrett RT, Schug MD et al. Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc Natl Acad Sci USA 1998; 95:10774–10778.

    Article  ADS  Google Scholar 

  114. Zipf KG. Human Behavior and the Principle of Least Effort. Redwood City: Addison-Wesley 1949.

    Google Scholar 

  115. Mantegna RN, Buldyrev SV, Goldberger AL et al. Linguistic features of noncoding DNA sequences. Phys Rev Lett 1994; 73:3169–3172.

    Article  ADS  Google Scholar 

  116. Mantegna RN, Buldyrev SV, Goldberger AL et al. Phys Rev E 1995; 2939.

    Google Scholar 

  117. Bonhoeffer S, Herz AVM, Boerlijst MC et al. Explaining “linguistic features” of noncoding DNA. Science 1996; 271:14–15.

    Article  ADS  Google Scholar 

  118. Makeev VJ, Lifanov AP, Nazina AG et al. Distance preferences in the arrangement of binding motifs and hierarchical levels in organization of transcription regulatory information. Nucl Acids Res 2003; 31:6016–6026.

    Article  Google Scholar 

  119. Jurka J, Kohany O, Pavlicek A et al. Duplication, coclustering, and selection of human Alu retrotransposons. Proc Natl Acad Sci USA 2004; 101:1268–1272.

    Article  ADS  Google Scholar 

  120. Stanley HE, Afanasyev V, Amaral L AN et al. Anomalous fluctuations in the dynamics of complex systems: From DNA and physiology to econophysics. Physica A 1996; 224 302–321.

    Article  ADS  Google Scholar 

  121. Pande V, Gosberg A Ya, Tanaka T. Nonrandomness in protein sequences-evidence for a physically driven stage of evolution, Proc Natl Acad Sci USA 1994; 91:12972–12975.

    Article  ADS  Google Scholar 

  122. Shakhnovich EI, Gutin AM. Implications of thermodynamics of protein folding for evolution of primary sequences. Nature 1990; 346:773–775.

    Article  ADS  Google Scholar 

  123. Li W-H, Marr TG, Kaneko K. Understanding long-range correlations in DNA sequences. Physica D 1994; 7:392–416.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Buldyrev, S.V. (2006). Power Law Correlations in DNA Sequences. In: Power Laws, Scale-Free Networks and Genome Biology. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-33916-7_9

Download citation

Publish with us

Policies and ethics