Skip to main content

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Two gene regulatory networks inferred from different types of data are considered in this chapter. Gene expression networks are networks inferred from microarray time series data and transcription factor networks are networks obtained from a new genome-wide technique that allows an identification of all of the DNA binding sites for each transcription factor (TF). While addressing the same underlying questions, these networks reflect different properties of gene regulation and provide different insights. The gene expression network is inferred from dynamic analysis of time series data of gene expression profiles. The TF net-works, on the other hand, are a direct result of experimental observation of a physical association between a TF and a DNA binding site, which (except for experimental noise) is unique. While our knowledge of the transcription factor networks is limited, these networks provide insights into a regulatory core network of TFs that regulate each other, and drive all network interconn ectivity. In both cases, the resulting networks show features that may be universal to biological systems. The global properties of such networks show the scale-free distributions of node connectivity indicative of a hierarchical network and also exhibit small world graph properties. We discuss a network growth model based on gene duplication that provides excellent agreement with the global network parameters derived from the analysis of experimental expression data. In addition to these global properties, the local properties of these gene expression networks can be used in data mining and classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeRisi J, Iyer A, Brown P. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 1997; 278:680–686.

    Article  ADS  Google Scholar 

  2. Spellman PT, Sherlock G, Zhang MQ et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 1998; 9:3273–3297.

    Google Scholar 

  3. Boldrick JC, Alizadeh AA, Diehn M et al. Stereotyped and specific gene expression programs in human innate immune responses to bacteria. Proc Natl Acad Sci USA 2002; 99:972–977.

    Article  ADS  Google Scholar 

  4. Bechtel M, Wu X, Dewey TG. Analysis of time series expression data reveals cooperation of signaling pathways in chondrocytes. Submitted 2003.

    Google Scholar 

  5. Reymond P, Weber H, Damond M et al. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 2000; 12:707–719.

    Article  Google Scholar 

  6. Dewey TG, Galas DJ. Dynamic models of gene expression and classification. Func Integr Genomics 2001; 1:269–278.

    Article  Google Scholar 

  7. Bhan A, Galas DJ, Dewey TG. A duplication growth model of gene expression networks. Bioinformatics 2002; 18:1486–1493.

    Article  Google Scholar 

  8. Chen T, He HL, Church GE. Modeling gene expression with differential equations. Pacific Symp Biocomputing 1999; 4:29–40.

    Google Scholar 

  9. Holter NS, Maritan A, Cieplak M et al. Dynamic modeling of gene expression data. Proc Natl Acad Sci USA 2001; 98:1693–1698.

    Article  ADS  Google Scholar 

  10. Heyer LJ, Kruglyak S, Yooseph S. Exploring expression data: Identification and analysis of coexpressed genes. Genome Res 1999; 9:1106–1115.

    Article  Google Scholar 

  11. D’Haeseleer P, Wen X, Fuhrman S et al. Linear modeling of mRNA expression levels during CNS development and injury. Pac Symp Biocomput 1999; 41–52.

    Google Scholar 

  12. D’Haeseleer P, Liang S, Somogyi R. Genetic network inference: From coexpression clustering to reverse engineering. Bioinformatics 2000; 16:707–26.

    Article  Google Scholar 

  13. Kim S, Imoto SS, Miyano S. Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. In: International Workshop on Computational Methods in Systems Biology (CMSB2003), Lecture Notes in Computer Science. Springer-Verlag, 2003:2602:104–113.

    Article  Google Scholar 

  14. de Hoon MJ, Imoto S, Kobayashi K et al. Inferring gene regulatory networks from time-ordered gene expression data of Bacillus subtilis using differential equations. Pac Symp Biocomput 2003; 17–28.

    Google Scholar 

  15. Yeung MK, Tegner J, Collins JJ. Reverse engineering gene networks using singular value decomposition and robust regression. Proc Natl Acad Sci USA 2002; 99:6163–6168.

    Article  ADS  Google Scholar 

  16. Wu X, Dewey TG. Cluster analysis of dynamic parameters of gene expression. J Bioinf Comp Biol 2003; 1:447–458.

    Article  Google Scholar 

  17. Simon I, Barnett J, Hannett N et al. Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 2001; 106:697–708.

    Article  Google Scholar 

  18. Jeong H, Tombor B, Albert R et al. The large-scale organization of metabolic networks. Nature 2000; 407:651–654.

    Article  ADS  Google Scholar 

  19. Barabási A-L, Albert R. Emergence of scaling in random networks. Science 1999; 286:509–512.

    Article  MathSciNet  Google Scholar 

  20. Albert R, Barabasi A-L. Statistical mechanics of complex networks. Rev Mod Phys 2002; 74:47–97.

    Article  ADS  MathSciNet  Google Scholar 

  21. Strogatz S. Exploring complex networks. Nature 2001; 410:268–276.

    Article  ADS  Google Scholar 

  22. Amaral LAN, Scala A, Barthélémy M et al. Classes of small-world networks. Proc Natl Acad Sci USA 2000; 97:11149–11152.

    Article  ADS  Google Scholar 

  23. Cohen JE. Threshold phenomena in random structures. Discr Appl Math 1988; 19:113–128.

    Article  MATH  Google Scholar 

  24. Kauffman S. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 1969; 22:437–467.

    Article  MathSciNet  Google Scholar 

  25. Watts DJ. Small worlds-the dynamics of networks between order and randomness. Princeton University Press, 1999.

    Google Scholar 

  26. Krapivsky PL, Redner S, Leyvraz F. Connectivity of growing random networks. Phys Rev Lett 2000; 85:4629–4632.

    Article  ADS  Google Scholar 

  27. Dorogovtsev SN, Mendes JFF. Scaling properties of scale-free evolving networks: Continuous approach. Phys Rev E 2001; 63:056125-1–056125-19.

    ADS  Google Scholar 

  28. Wagner A, Fell D. The small world inside large metabolic networks. Proc Roy Soc London Ser B 2001; in press.

    Google Scholar 

  29. Uetz P, Giot L, Cagney G et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000; 403:623–627.

    Article  ADS  Google Scholar 

  30. Ito T, Chiba T, Ozawa R et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 2001; 98:4569–4574.

    Article  ADS  Google Scholar 

  31. Seioghe C, Wolfe K. Updated map of duplicated regions in the yeast genome. Gene 1999; 238:253–261.

    Article  Google Scholar 

  32. Lander E et al. Initial sequencing and analysis of the human genome. Nature 2001; 409:860–921.

    Article  ADS  Google Scholar 

  33. Ohno S. Evolution by Gene Duplication. Springer-Verlag, 1970.

    Google Scholar 

  34. Wagner A. The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol Biol Evol 2001; 18:1283–1292.

    Google Scholar 

  35. Rzhetsky A, Gomez SM. Birth of scale-free molecular networks and the number of distinct DNA and protein domains per genome. Bioinformatics 2001; 17:988–996.

    Article  Google Scholar 

  36. Lee TI, Rinaldi NJ, Robert F et al. Transcriptional regulatory networks in Saccharomyces cerivisiae. Science 2002; 298:799–804.

    Article  ADS  Google Scholar 

  37. Babu MM, Teichman SA. Evolution of transcription factors and the gene regulatory network in Escherichia coli. Nucl Acids Res 2003; 31:1234–1244.

    Article  Google Scholar 

  38. Shen-Orr SS, Milo R, Mangan S et al. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genet 2002; 31:64–68.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Gregory Dewey .

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Dewey, T.G., Galas, D.J. (2006). Gene Regulatory Networks. In: Power Laws, Scale-Free Networks and Genome Biology. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-33916-7_8

Download citation

Publish with us

Policies and ethics